1. Effect of Insulin on Bone Formation Ability of Rat Alveolar Bone Marrow Mesenchymal Stem Cells.
- Author
-
E L, Lu R, Zheng Y, Zhang L, Ma X, Lv Y, Gao M, Zhang S, Wang L, Liu H, and Zhang R
- Subjects
- Mice, Rats, Animals, Insulin pharmacology, Insulin metabolism, Cell Differentiation, Collagen metabolism, Osteocalcin genetics, Osteocalcin metabolism, TOR Serine-Threonine Kinases genetics, TOR Serine-Threonine Kinases metabolism, Bone Marrow Cells, Cells, Cultured, Alkaline Phosphatase metabolism, Mammals metabolism, Osteogenesis, Mesenchymal Stem Cells
- Abstract
The alveolar bone marrow mesenchymal stem cells (ABM-MSCs) play an important role in oral bone healing and regeneration. Insulin is considered to improve impaired oral bones due to local factors, systemic factors and pathological conditions. However, the effect of insulin on bone formation ability of ABM-MSCs still needs to be elucidated. The aim of this study was to determine the responsiveness of rat ABM-MSCs to insulin and to explore the underlying mechanism. We found that insulin promoted ABM-MSCs proliferation in a concentration-dependent manner, in which 10
-6 M insulin exerted the most significant effect. 10-6 M insulin significantly promoted the type I collagen (COL-1) synthesis, alkaline phosphatase (ALP) activity, osteocalcin (OCN) expression, and mineralized matrix formation in ABM-MSCs, significantly enhanced the gene and protein expressions of intracellular COL-1, ALP, and OCN. Acute insulin stimulation significantly promoted insulin receptor (IR) phosphorylation, IR substrate-1 (IRS-1) protein expression, and mammalian target of rapamycin (mTOR) phosphorylation, but chronic insulin stimulation decreased these values, while inhibitor NT219 could attenuate these responses. When seeded on β-tricalcium phosphate (β-TCP), ABM-MSCs adhered and grew well, during the 28-day culture period, ABM-MSCs+β-TCP +10-6 M insulin group showed significantly higher extracellular total COL-1 amino-terminus prolongation peptide content, ALP activity, OCN secretion, and Ca and P concentration. When implanted subcutaneously in severe combined immunodeficient mice for 1 month, the ABM-MSCs+β-TCP +10-6 M insulin group obtained the most bone formation and blood vessels. These results showed that insulin promoted the proliferation and osteogenic differentiation of ABM-MSCs in vitro, and enhance osteogenesis and angiogenesis of ABM-MSCs in vivo. Inhibition studies demonstrated that the insulin-induced osteogenic differentiation of ABM-MSCs was dependent of insulin/mTOR signaling. It suggests that insulin has a direct anabolic effect on ABM-MSCs.- Published
- 2023
- Full Text
- View/download PDF