1. Micro-macro SERS strategy for highly sensitive paper cartridge with trace-level molecular detection.
- Author
-
Yi L, Zhang J, Wu J, Zhuang Y, Song Q, Zhao L, Liang M, Li G, Hu B, Yin P, Castel H, Maciuk A, and Figadere B
- Subjects
- Equipment Design, Polymers chemistry, Gold chemistry, Printing, Three-Dimensional, Spectrum Analysis, Raman methods, Paper, Limit of Detection, Biosensing Techniques methods, Biosensing Techniques instrumentation, Metal Nanoparticles chemistry
- Abstract
Surface-enhanced Raman Scattering (SERS) has become a powerful spectroscopic technology for highly sensitive detection. However, SERS is still limited in the lab because it either requires complicated preparation or is limited to specific compounds, causing poor applicability for practical applications. Herein, a micro-macro SERS strategy, synergizing polymer-assisted printed process with paper-tip enrichment process, is proposed to fabricate highly sensitive paper cartridges for sensitive practical applications. The polymer-assisted printed process finely aggregates nanoparticles with a discrete degree of 1.77, and SERS results are matched with theoretical enhancement, indicating small cluster-dominated hotspots at the micro-scale and thus 41-fold SERS increase compared to other aggregation methods. The paper-tip enrichment process moves molecules in a fluid into small tips filled with plasmonic clusters, and molecular localization at hotspots is achieved by the simulation and optimization of fluidic velocity at the macro-scale, generating a 39.5-fold SERS sensibility increase in comparison with other flow methods. A highly sensitive paper cartridge contains a paper-tip and a 3D-printed cartridge, which is simple, easy-to-operate, and costs around 2 US dollars. With a detection limit of 10
-12 M for probe molecules, the application of real samples and multiple analytes achieves single-molecule level sensitivity and reliable repeatability with a 30-min standardized procedure. The micro-macro SERS strategy demonstrates its potential in practical applications that require point-of-care detection., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome. We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us. We confirm that we have given due consideration to the protection of intellectual property associated with this work and that there are no impediments to publication, including the timing of publication, with respect to intellectual property. In so doing we confirm that we have followed the regulations of our institutions concerning intellectual property. We understand that the Corresponding Author is the sole contact for the Editorial process (including Editorial Manager and direct communications with the office). He/she is responsible for communicating with the other authors about progress, submissions of revisions and final approval of proofs. We confirm that we have provided a current, correct email address which is accessible by the Corresponding Author., (Copyright © 2024 Elsevier B.V. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF