1. iTRAQ-Based Proteomics Analysis of Autophagy-Mediated Responses against MeJA in Laticifers of Euphorbia kansui L.
- Author
-
Fang, Xiaoai, Yao, Xiangyu, Zhang, Yue, Tian, Zheni, Wang, Meng, Li, Peng, and Cai, Xia
- Subjects
- *
PROTEOMICS , *EUPHORBIA , *SUPEROXIDE dismutase , *ELECTRON microscopes , *PLANT hormones , *GALACTOSIDASES , *WESTERN immunoblotting - Abstract
Autophagy is a well-defined catabolic mechanism whereby cytoplasmic materials are engulfed into a structure termed the autophagosome. Methyl jasmonate (MeJA), a plant hormone, mediates diverse developmental process and defense responses which induce a variety of metabolites. In plants, little is known about autophagy-mediated responses against MeJA. In this study, we used high-throughput comparative proteomics to identify proteins of latex in the laticifers. The isobaric tags for relative and absolute quantification (iTRAQ) MS/MS proteomics were performed, and 298 proteins among MeJA treated groups and the control group of Euphorbia kansui were identified. It is interesting to note that 29 significant differentially expressed proteins were identified and their associations with autophagy and ROS pathway were verified for several selected proteins as follows: α-L-fucosidase, β-galactosidase, cysteine proteinase, and Cu/Zn superoxide dismutase. Quantitative real-time PCR analysis of the selected genes confirmed the fact that MeJA might enhance the expression of some genes related to autophagy. The western blotting and immunofluorescence results of ATG8 and ATG18a which are two important proteins for the formation of autophagosomes also demonstrated that MeJA could promote autophagy at the protein level. Using the electron microscope, we observed an increase in autophagosomes after MeJA treatment. These results indicated that MeJA might promote autophagy in E. kansui laticifers; and it was speculated that MeJA mediated autophagy through two possible ways: the increase of ROS induces ATG8 accumulation and then aotophagosome formation, and MeJA promotes ATG18 accumulation and then autophagosome formation. Taken together, our results provide several novel insights for understanding the mechanism between autophagy and MeJA treatment. However, the specific mechanism remains to be further studied in the future. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF