1. Metabolite interactions in the bacterial Calvin cycle and implications for flux regulation.
- Author
-
Sporre, Emil, Karlsen, Jan, Schriever, Karen, Asplund-Samuelsson, Johannes, Janasch, Markus, Strandberg, Linnéa, Karlsson, Anna, Kotol, David, Zeckey, Luise, Piazza, Ilaria, Syrén, Per-Olof, Edfors, Fredrik, and Hudson, Elton P.
- Subjects
CALVIN cycle ,ENZYME regulation ,MICROBIAL metabolites ,AUTOTROPHIC bacteria ,PROTEIN-protein interactions ,CLUSTER analysis (Statistics) ,SYNECHOCYSTIS - Abstract
Metabolite-level regulation of enzyme activity is important for microbes to cope with environmental shifts. Knowledge of such regulations can also guide strain engineering for biotechnology. Here we apply limited proteolysis-small molecule mapping (LiP-SMap) to identify and compare metabolite-protein interactions in the proteomes of two cyanobacteria and two lithoautotrophic bacteria that fix CO
2 using the Calvin cycle. Clustering analysis of the hundreds of detected interactions shows that some metabolites interact in a species-specific manner. We estimate that approximately 35% of interacting metabolites affect enzyme activity in vitro, and the effect is often minor. Using LiP-SMap data as a guide, we find that the Calvin cycle intermediate glyceraldehyde-3-phosphate enhances activity of fructose-1,6/sedoheptulose-1,7-bisphosphatase (F/SBPase) from Synechocystis sp. PCC 6803 and Cupriavidus necator in reducing conditions, suggesting a convergent feed-forward activation of the cycle. In oxidizing conditions, glyceraldehyde-3-phosphate inhibits Synechocystis F/SBPase by promoting enzyme aggregation. In contrast, the glycolytic intermediate glucose-6-phosphate activates F/SBPase from Cupriavidus necator but not F/SBPase from Synechocystis. Thus, metabolite-level regulation of the Calvin cycle is more prevalent than previously appreciated. A proteolysis-coupled mass spectrometry analysis is used to examine metabolite-protein interaction in cyanobacteria and finds that the regulation exerted by metabolites on the Calvin cycle is more numerous than previously thought. [ABSTRACT FROM AUTHOR]- Published
- 2023
- Full Text
- View/download PDF