1. Using analogs ensembles and genetic algorithm to handle uncertainty in a microgrid
- Author
-
Calderon-Obaldia, Fausto, Migan-Dubois, Anne, Badosa, Jordi, Bourdin, Vincent, Migan, Anne, Laboratoire Génie électrique et électronique de Paris (GeePs), CentraleSupélec-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Universidad de Costa Rica (UCR), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur (LIMSI), and Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Design ,analogs ensemble ,microgrids ,energy management system ,[SPI.NRJ]Engineering Sciences [physics]/Electric power ,battery management ,[PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,[SPI.TRON] Engineering Sciences [physics]/Electronics ,[SPI.TRON]Engineering Sciences [physics]/Electronics ,Operation and Performance Subtopic 3: Operation ,PV Systems and Storage -Modelling ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,genetic algorithm ,Performance and Maintenance of PV Systems uncertainty ,[SPI.NRJ] Engineering Sciences [physics]/Electric power - Abstract
International audience; In this work, a novel approach to deal with the PV forecast uncertainty during the energy management of a microgrid is presented. A novel adaptation of an analogs ensembles method allows to obtain a Sharpness indicator that is correlated with the PV forecast uncertainty. This indicator can be used to dynamically restrict the usable battery capacity when doing the day-ahead optimal scheduling using a genetic algorithm. This permits to deal with the PV uncertainty internally within the microgrid. This gives a total certainty to the grid operator about the power needs of the microgrid one day in advance. In this way, in a big scale, the uncertainty caused by a higher penetration of renewable energy sources in the national grid could be highly reduced. The main results of a real study-case are presented and the limitations of the method for its implementation are also discussed.
- Published
- 2020