1. DNA tetrahedral scaffold-corbelled self-feedback circuit for dual-mode ratiometric biosensing with Ru@COF-LZU1 accelerator.
- Author
-
Zhang Y, Guo Y, Yang H, Miao X, and Feng Q
- Subjects
- Humans, Luminescent Measurements, Electrochemical Techniques methods, Ruthenium chemistry, Limit of Detection, Glucose Oxidase chemistry, DNA chemistry, Hydrogen Peroxide chemistry, Liver Neoplasms diagnosis, Carcinoma, Hepatocellular diagnosis, Biosensing Techniques methods, MicroRNAs analysis, Metal-Organic Frameworks chemistry
- Abstract
Sensitive, reliable, and specific detection of microRNAs (miRNAs) is a key objective for disease diagnosis and prognosis. Here, a ratiometric fluorescent/electrochemiluminescent (FL/ECL) sensor was designed for the dual-mode detection of miRNA-122, a hepatocellular carcinoma biomarker. The strong ECL emission was achieved from imine-linked covalent organic framework (COF-LZU1) accelerator enriched Ru(bpy)
3 2+ molecules (Ru@COF-LZU1), which was applied as a delimited reaction micro-reactor to enhance ECL emission. Impressively, to construct an efficient sensing platform, self-feedback circuit was grafted at the vertex of DNA tetrahedral scaffold (DTS), which could provide a solution-phase-like environment and transform miRNA-122 into abundant single-stranded DNAs on the disposable electrode. Simultaneously, the carboxyfluorescein (FAM) tagged DNA segment was cleaved and released into the reaction solution, bringing in the recovery of FL response (FL on). Finally, the introduction of glucose oxidase (GOD) could generate H2 O2 by in situ catalyzing GOD to glucose, resulting in the decrease of ECL signal (ECL off). Relying on FL/ECL ratio value, miRNA-122 was quantified with high sensitivity, well selectivity, stability and favorable practicability, suggesting that the proposed biosensor hold great potential for clinical diagnosis., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF