1. Microtubules self-repair in living cells
- Author
-
Morgan Gazzola, Alexandre Schaeffer, Ciarán Butler-Hallissey, Karoline Friedl, Benoit Vianay, Jérémie Gaillard, Christophe Leterrier, Laurent Blanchoin, Manuel Théry, Ecotaxie, microenvironnement et développement lymphocytaire (EMily (UMR_S_1160 / U1160)), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité), Institut de Recherche Saint-Louis - Hématologie Immunologie Oncologie (Département de recherche de l’UFR de médecine, ex- Institut Universitaire Hématologie-IUH) (IRSL), Université Paris Cité (UPCité), CytoMorphoLab, Physiologie cellulaire et végétale (LPCV), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), Hopital Saint-Louis [AP-HP] (AP-HP), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Institut de neurophysiopathologie (INP), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Abbelight, Bettencourt-Schueller Foundation, Emergence program of the Ville de Paris, Schlumberger Foundation for Education and Research, ANR-17-EURE-0003,CBH-EUR-GS,CBH-EUR-GS(2017), ANR-10-LABX-0049,GRAL,Grenoble Alliance for Integrated Structural Cell Biology(2010), European Project: 771599,ICEBERG, European Project: 741773,AAA, Martin-Laffon, Jacqueline, CBH-EUR-GS - - CBH-EUR-GS2017 - ANR-17-EURE-0003 - EURE - VALID, Grenoble Alliance for Integrated Structural Cell Biology - - GRAL2010 - ANR-10-LABX-0049 - LABX - VALID, Exploration below the tip of the microtubule - ICEBERG - 771599 - INCOMING, and Adaptive Actin Architectures - AAA - 741773 - INCOMING
- Subjects
renewal ,remnants ,self-repair ,shaft ,MESH: Guanosine Triphosphate ,MESH: Microtubules ,MESH: Cytoplasm ,GTP islands ,MESH: Tubulin ,[SDV.BC]Life Sciences [q-bio]/Cellular Biology ,General Biochemistry, Genetics and Molecular Biology ,MESH: Polymers ,tubulin ,rescue ,MESH: Actin Cytoskeleton ,General Agricultural and Biological Sciences ,[SDV.BC] Life Sciences [q-bio]/Cellular Biology ,lattice ,microtubule - Abstract
International audience; Microtubule self-repair has been studied both in vitro and in vivo as an underlying mechanism of microtubule stability. The turnover of tubulin dimers along the microtubule has challenged the pre-existing dogma that only growing ends are dynamic. However, although there is clear evidence of tubulin incorporation into the shaft of polymerized microtubules in vitro, the possibility of such events occurring in living cells remains uncertain. In this study, we investigated this possibility by microinjecting purified tubulin dimers labeled with a red fluorophore into the cytoplasm of cells expressing GFP-tubulin. We observed the appearance of red dots along the pre-existing green microtubule within minutes. We found that the fluorescence intensities of these red dots were inversely correlated with the green signal, suggesting that the red dimers were incorporated into the microtubules and replaced the pre-existing green dimers. Lateral distance from the microtubule center was similar to that in incorporation sites and in growing ends. The saturation of the size and spatial frequency of incorporations as a function of injected tubulin concentration and post-injection delay suggested that the injected dimers incorporated into a finite number of damaged sites. By our low estimate, within a few minutes of the injections, free dimers incorporated into major repair sites every 70 μm of microtubules. Finally, we mapped the location of these sites in micropatterned cells and found that they were more concentrated in regions where the actin filament network was less dense and where microtubules exhibited greater lateral fluctuations.
- Published
- 2023