1. Energy and system size dependence of phi meson production in Cu plus Cu and Au plus Au collisions
- Author
-
ABELEV, BI, AGGARWAL, MM, AHAMMED, Z, ANDERSON, BD, ARKHIPKIN, D, AVERICHEV, GS, BAI, Y, BALEWSKI, J, BARANNIKOVA, O, BARNSBY, LS, BAUDOT, J, BAUMGART, S, BEAVIS, DR, BELLWIED, R, BENEDOSSO, F, BETANCOURT, MJ, BETTS, RR, BHARADWAJ, S, BHASIN, A, BHATI, AK, BICHSEL, H, BIELCIK, J, BIELCIKOVA, J, BIRITZ, B, BLAND, LC, BOMBARA, M, BONNER, BE, BOTJE, M, BOUCHET, J, BRAIDOT, E, BRANDIN, AV, BRUNA, E, BUELTMANN, S, BURTON, TP, BYSTERSKY, M, CAI, XZ, CAINES, H, SANCHEZ, MCD, CALLNER, J, CATU, O, CEBRA, D, CENDEJAS, R, CERVANTES, MC, CHAJECKI, Z, CHALOUPKA, P, CHATTOPADHYAY, S, CHEN, HF, CHEN, JH, CHEN, JY, CHENG, J, CHERNEY, M, CHIKANIAN, A, CHOI, KE, CHRISTIE, W, CHUNG, SU, CLARKE, RF, CODRINGTON, MJ, COFFIN, JP, CORLISS, R, CORMIER, TM, COSENTINO, MR, CRAMER, JG, CRAWFORD, HJ, DAS, D, DASH, S, DAUGHERITY, M, DE SILVA, C, DEDOVICH, TG, DEPHILLIPS, M, DEREVSCHIKOV, AA, DE SOUZA, RD, DIDENKO, L, DJAWOTHO, P, DOGRA, SM, DONG, X, DRACHENBERG, JL, DRAPER, JE, DU, F, DUNLOP, JC, MAZUMDAR, MRD, EDWARDS, WR, EFIMOV, LG, ELHALHULI, E, ELNIMR, M, EMELIANOV, V, ENGELAGE, J, EPPLEY, G, ERAZMUS, B, ESTIENNE, M, EUN, L, FACHINI, P, FATEMI, R, FEDORISIN, J, FENG, A, FILIP, P, FINCH, E, FINE, V, FISYAK, Y, GAGLIARDI, CA, GAILLARD, L, GANGADHARAN, DR, GANTI, MS, GARCIA-SOLIS, E, GHAZIKHANIAN, V, GHOSH, P, GORBUNOV, YN, GORDON, A, GREBENYUK, O, GROSNICK, D, GRUBE, B, GUERTIN, SM, GUIMARAES, KSFF, GUPTA, A, GUPTA, N, GURYN, W, HAAG, B, HALLMAN, TJ, HAMED, A, HARRIS, JW, HE, W, HEINZ, M, HEPPLEMANN, S, HIPPOLYTE, B, HIRSCH, A, HJORT, E, HOFFMAN, AM, HOFFMANN, GW, HOFMAN, DJ, HOLLIS, RS, HUANG, HZ, HUMANIC, TJ, IGO, G, IORDANOVA, A, JACOBS, P, JACOBS, WW, JAKI, P, JIN, F, JONES, CL, JONES, PG, JOSEPH, J, JUDD, EG, KABANA, S, KAJIMOTO, K, KANG, K, KAPITAN, J, KAPLAN, M, KEANE, D, KECHECHYAN, A, KETTLER, D, KHODYREV, VY, KIKOLA, DP, KIRYLUK, J, KISIEL, A, KLEIN, SR, KNOSPE, AG, KOCOLOSKI, A, KOETKE, DD, KOPYTINE, M, KOTCHENDA, L, KOUCHPIL, V, KRAVTSOV, P, KRAVTSOV, VI, KRUEGER, K, KRUS, M, KUHN, C, KUMAR, L, KURNADI, P, LAMONT, MAC, LANDGRAF, JM, LAPOINTE, S, LAURET, J, LEBEDEV, A, LEDNICKY, R, LEE, CH, LEIGHT, W, LEVINE, MJ, LI, C, LI, Y, LIN, G, LIN, X, LINDENBAUM, SJ, LISA, MA, LIU, F, LIU, H, LIU, J, LIU, L, LJUBICIC, T, LLOPE, WJ, LONGACRE, RS, LOVE, WA, LU, Y, LUDLAM, T, LYNN, D, MA, GL, MA, YG, MAHAPATRA, DP, MAJKA, R, MALL, OI, MANGOTRA, LK, MANWEILER, R, MARGETIS, S, MARKERT, C, MATIS, HS, MATULENKO, YA, MCSHANE, TS, MESCHANIN, A, MILLNER, R, MINAEV, NG, MIODUSZEWSKI, S, MISCHKE, A, MITCHELL, J, MOHANTY, B, MOROZOV, DA, MUNHOZ, MG, NANDI, BK, NATTRASS, C, NAYAK, TK, NELSON, JM, NEPALI, C, NETRAKANTI, PK, NG, MJ, NOGACH, LV, NURUSHEV, SB, ODYNIEC, G, OGAWA, A, OKADA, H, OKOROKOV, V, OLSON, D, PACHR, M, PAGE, BS, PAL, SK, PANDIT, Y, PANEBRATSEV, Y, PAWLAK, T, PEITZMANN, T, PEREVOZTCHIKOV, V, PERKINS, C, PERYT, W, PHATAK, SC, PLANINIC, M, PLUTA, J, POLJAK, N, POSKANZER, AM, POTUKUCHI, BVKS, PRINDLE, D, PRUNEAU, C, PRUTHI, NK, PUTSCHKE, J, RANIWALA, R, RANIWALA, S, RAY, RL, REDWINE, R, REED, R, RIDIGER, A, RITTER, HG, ROBERTS, JB, ROGACHEVSKIY, OV, ROMERO, JL, ROSE, A, ROY, C, RUAN, L, RUSSCHER, MJ, RYKOV, V, SAHOO, R, SAKREJDA, I, SAKUMA, T, SALUR, S, SANDWEISS, J, SARSOUR, M, SAVIN, I, SCHAMBACH, J, SCHARENBERG, RP, SCHMITZ, N, SEGER, J, SELYUZHENKOV, I, SEYBOTH, R, SHABETAI, A, SHAHALIEV, E, SHAO, M, SHARMA, M, SHI, SS, SHI, XH, SICHTERMANN, E, SIMON, F, SINGARAJU, RN, SKOBY, MJ, SMIRNOV, N, SNELLINGS, R, SORENSEN, P, SOWINSKI, J, SPINKA, HM, SRIVASTAVA, B, STADNIK, A, STANISLAUS, TDS, STASZAK, D, STRIKHANOV, M, STRINGFELLOW, B, SUAIDE, AAP, SUAREZ, MC, SUBBA, NL, SUMBERA, M, SUN, XM, SUN, Y, SUN, Z, SURROW, B, SYMONS, TJM, DE TOLEDO, AS, TAKAHASHI, J, TANG, AH, TANG, Z, TARNOWSKY, T, THEIN, D, THOMAS, JH, TIAN, J, TIMMINS, AR, TIMOSHENKO, S, TLUSTY, D, TOKAREV, M, TRAINOR, TA, TRAM, VN, TRATTNER, AL, TRENTALANGE, S, TRIBBLE, RE, TSAI, OD, ULERY, J, ULLRICH, T, UNDERWOOD, DG, VAN BUREN, G, VAN LEEUWEN, M, MOLEN, AMV, VANFOSSEN, JA, VARMA, R, VASCONCELOS, GMS, VASILEVSKI, IM, VASILIEV, AN, VIDEBAEK, F, VIGDOR, SE, VIYOGI, YP, VOKAL, S, VOLOSHIN, SA, WADA, M, WAGGONER, WT, WALKER, M, WANG, F, WANG, G, WANG, JS, WANG, Q, WANG, X, WANG, XL, WANG, Y, WEBB, JC, WESTFALL, GD, WHITTEN, C, WIEMAN, H, WISSINK, SW, WITT, R, WU, Y, XU, N, XU, QH, XU, Y, XU, Z, YEPES, P, YOO, IK, YUE, Q, ZAWISZA, M, ZBROSZCZYK, H, ZHAN, W, ZHANG, H, ZHANG, S, ZHANG, WM, ZHANG, Y, ZHANG, ZP, ZHAO, Y, ZHONG, C, ZHOU, J, ZOULKARNEEV, R, ZOULKARNEEVA, Y, and ZUO, JX
- Subjects
Nucleus Collisions ,Particle Production ,Canonical Suppression ,Proton-Proton Collisions ,Resonances ,Strangeness Enhancement ,Quark-Gluon Plasma ,Heavy-Ion Collisions ,Conservation ,Rule ,Collaboration ,Pp Collisions ,Model - Abstract
We study the beam-energy and system-size dependence of phi meson production (using the hadronic decay mode phi -> K(+) K(-)) by comparing the new results from Cu + Cu collisions and previously reported Au + Au collisions at root s(NN) = 62.4 and 200 GeV measured in the STAR experiment at RHIC. Data presented in this Letter are from mid-rapidity (vertical bar y vertical bar < 0.5) for 0.4 < p(T) < 5 GeV/c. At a given beam energy, the transverse momentum distributions for phi mesons are observed to be similar in yield and shape for Cu + Cu and Au + Au colliding systems with similar average numbers of participating nucleons. The phi meson yields in nucleus-nucleus collisions, normalized by the average number of participating nucleons, are found to be enhanced relative to those from p + p collisions. The enhancement for phi mesons lies between strange hadrons having net strangeness = 1 (K(-) and ) and net strangeness = 2 (Xi). The enhancement for phi mesons is observed to be higher at root s(NN) = 200 GeV compared to 62.4 GeV. These observations for the produced phi(s (s) over bar) mesons clearly suggest that, at these collision energies, the source of enhancement of strange hadrons is related to the formation of a dense partonic medium in high energy nucleus-nucleus collisions and cannot be alone due to canonical suppression of their production in smaller systems. (C) 2009
- Published
- 2009