1. Testing for marginal covariate effect when the subgroup size induced by the covariate is informative.
- Author
-
Anyaso-Samuel S and Datta S
- Subjects
- Humans, Cluster Analysis, Computer Simulation, Data Interpretation, Statistical, Sample Size, Bias, Periodontal Diseases, Models, Statistical
- Abstract
In many cluster-correlated data analyses, informative cluster size poses a challenge that can potentially introduce bias in statistical analyses. Different methodologies have been introduced in statistical literature to address this bias. In this study, we consider a complex form of informativeness where the number of observations corresponding to latent levels of a unit-level continuous covariate within a cluster is associated with the response variable. This type of informativeness has not been explored in prior research. We present a novel test statistic designed to evaluate the effect of the continuous covariate while accounting for the presence of informativeness. The covariate induces a continuum of latent subgroups within the clusters, and our test statistic is formulated by aggregating values from an established statistic that accounts for informative subgroup sizes when comparing group-specific marginal distributions. Through carefully designed simulations, we compare our test with four traditional methods commonly employed in the analysis of cluster-correlated data. Only our test maintains the size across all data-generating scenarios with informativeness. We illustrate the proposed method to test for marginal associations in periodontal data with this distinctive form of informativeness., Competing Interests: Declaration of conflicting interestsThe authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
- Published
- 2024
- Full Text
- View/download PDF