48 results on '"Isei Tanida"'
Search Results
2. Impaired GATE16-mediated exocytosis in exocrine tissues causes Sjögren's syndrome-like exocrinopathy
- Author
-
Akiko Suzuki, Chihiro Iwaya, Kenichi Ogata, Hiroki Yoshioka, Junbo Shim, Isei Tanida, Masaaki Komatsu, Norihiro Tada, and Junichi Iwata
- Subjects
Pharmacology ,Cellular and Molecular Neuroscience ,Disease Models, Animal ,Mice ,Sjogren's Syndrome ,Molecular Medicine ,Animals ,Cell Biology ,Molecular Biology ,Exocytosis ,Salivary Glands ,Autoantibodies ,Autoimmune Diseases - Abstract
Sjögren's syndrome (SjS) is a chronic autoimmune disease characterized by immune cell infiltration of the exocrine glands, mainly the salivary and lacrimal glands. Despite recent advances in the clinical and mechanistic characterization of the disease, its etiology remains largely unknown. Here, we report that mice with a deficiency for either Atg7 or Atg3, which are enzymes involved in the ubiquitin modification pathway, in the salivary glands exhibit a SjS-like phenotype, characterized by immune cell infiltration with autoantibody detection, acinar cell death, and dry mouth. Prior to the onset of the SjS-like phenotype in these null mice, we detected an accumulation of secretory vesicles in the acinar cells of the salivary glands and found that GATE16, an uncharacterized autophagy-related molecule activated by ATG7 (E1-like enzyme) and ATG3 (E2-like enzyme), was highly expressed in these cells. Notably, GATE16 was activated by isoproterenol, an exocytosis inducer, and localized on the secretory vesicles in the acinar cells of the salivary glands. Failure to activate GATE16 was correlated with exocytosis defects in the acinar cells of the salivary glands in Atg7 and Atg3 cKO mice. Taken together, our results show that GATE16 activation regulated by the autophagic machinery is crucial for exocytosis and that defects in this pathway cause SjS.
- Published
- 2022
3. Establishment of a system for screening autophagic flux regulators using a modified fluorescent reporter and CRISPR/Cas9
- Author
-
Miwa Himuro, Luka Suzuki, Yuya Nishida, Takeshi Miyatsuka, Rieko Yazawa, Toshiaki Shimizu, Hidenori Haruna, Shuhei Aoyama, Hirotaka Watada, Isei Tanida, and Noriyuki Takubo
- Subjects
0301 basic medicine ,Green Fluorescent Proteins ,Biophysics ,Protein degradation ,Autophagy-Related Protein 7 ,Biochemistry ,Green fluorescent protein ,03 medical and health sciences ,0302 clinical medicine ,Lysosome ,Autophagy ,medicine ,Animals ,Humans ,CRISPR ,Molecular Biology ,Cells, Cultured ,PI3K/AKT/mTOR pathway ,Mice, Knockout ,Chemistry ,Cell Biology ,Fibroblasts ,Embryo, Mammalian ,Cell biology ,Luminescent Proteins ,HEK293 Cells ,030104 developmental biology ,medicine.anatomical_structure ,Gene Expression Regulation ,Microscopy, Fluorescence ,030220 oncology & carcinogenesis ,CRISPR-Cas Systems ,mCherry ,Microtubule-Associated Proteins ,Flux (metabolism) - Abstract
Autophagy is a mechanism of bulk protein degradation that plays an important role in regulating homeostasis in many organisms. Among several methods for evaluating its activity, a fluorescent reporter GFP-LC3-RFP-LC3ΔG, in which GFP-LC3 is cleaved by ATG4 following autophagic induction and degraded in lysosome, has been used for monitoring autophagic flux, which is the amount of lysosomal protein degradation. In this study, we modified this reporter by exchanging GFP for pHluorin, which is more sensitive to low pH, and RFP to mCherry, to construct pHluorin-LC3-mCherry reporter. Following starvation or mTOR inhibition, the increase of autophagic flux was detected by a decrease of the fluorescent ratio of pHluorin to mCherry; our reporter was also more sensitive to autophagy-inducing stimuli than the previous one. To establish monitoring cells for mouse genome-wide screening of regulators of autophagic flux based on CRISPR/Cas9 system, after evaluating knockout efficiency of clones of Cas9-expressing MEFs, we co-expressed our reporter and confirmed that autophagic flux was impaired in gRNA-mediated knockout of canonical autophagy genes. Finally, we performed genome-wide gRNA screening for genes inhibiting starvation-mediated autophagic flux and identified previously reported genes such as Atgs. Thus, we have successfully established a system for screening of genes regulating autophagic flux with our pHluorin-LC3-mCherry reporter in mice.
- Published
- 2019
- Full Text
- View/download PDF
4. A PRNP-Disrupted Human Neuroblastoma Cell Line and Its Stable Transformants Expressing Prion Protein Variants
- Author
-
Toshiyuki Yamaji, Yuko Okemoto-Nakamura, Kentaro Hanada, Isei Tanida, and Ken'ichi Hagiwara
- Subjects
Biology ,Prion protein ,General Agricultural and Biological Sciences ,Neuroblastoma cell line ,Molecular biology ,PRNP - Published
- 2019
- Full Text
- View/download PDF
5. Blocking LC3 lipidation and ATG12 conjugation reactions by ATG7 mutant protein containing C572S
- Author
-
Akari Nitta, Ayumi Igarashi, Koji Aoki, Takashi Ueno, Isei Tanida, Yasuyo Deyama, Kazuya Hori, Manabu Sugai, and Eiki Kominami
- Subjects
0301 basic medicine ,Autophagosome ,ATG8 ,ATG5 ,Biophysics ,Autophagy-Related Protein 7 ,Biochemistry ,Autophagy-Related Protein 5 ,ATG12 ,03 medical and health sciences ,0302 clinical medicine ,Ubiquitin ,Mutant protein ,Autophagy ,Humans ,Molecular Biology ,Cells, Cultured ,biology ,Chemistry ,Phosphatidylethanolamines ,Autophagosomes ,Autophagy-Related Protein 8 Family ,Cell Biology ,Cell biology ,030104 developmental biology ,030220 oncology & carcinogenesis ,biology.protein ,Mutant Proteins ,Autophagy-Related Protein 12 - Abstract
Autophagy, a system for the bulk degradation of intracellular components, is essential for homeostasis and the healthy physiology and development of cells and tissues. Its deregulation is associated with human disease. Thus, methods to modulate autophagic activity are critical for analysis of its role in mammalian cells and tissues. Here we report a method to inhibit autophagy using a mutant variant of the protein ATG7, a ubiquitin E1-like enzyme essential for autophagosome formation. During autophagy, ATG7 activates the conjugation of LC3 (ATG8) with phosphatidylethanolamine (PE) and ATG12 with ATG5. Human ATG7 interactions with LC3 or ATG12 require a thioester bond involving the ATG7 cysteine residue at position 572. We generated TetOff cells expressing mutant ATG7 protein carrying a serine substitution of this critical cysteine residue (ATG7C572S). Because ATG7C572S forms stable intermediate complexes with LC3 or ATG12, its expression resulted in a strong blockage of the ATG-conjugation system and suppression of autophagosome formation. Consequently, ATG7C572S mutant protein can be used as an inhibitor of autophagy.
- Published
- 2019
- Full Text
- View/download PDF
6. Blood group P1 antigen–bearing glycoproteins are functional but less efficient receptors of Shiga toxin than conventional glycolipid-based receptors
- Author
-
Yoko Furuta, Toshiyuki Yamaji, Yasuo Uchiyama, Noriko Suzuki, Isei Tanida, Kanta Morimoto, Yusuke Suzuki, Soichiro Kakuta, and Kentaro Hanada
- Subjects
0301 basic medicine ,Glycan ,Endosome ,Glycobiology and Extracellular Matrices ,Receptors, Cell Surface ,Biochemistry ,Shiga Toxin ,03 medical and health sciences ,Mice ,Glycolipid ,Antigen ,Animals ,Humans ,Receptor ,Molecular Biology ,chemistry.chemical_classification ,030102 biochemistry & molecular biology ,biology ,Globosides ,Shiga toxin ,Cell Biology ,Membrane transport ,Galactosyltransferases ,Molecular biology ,030104 developmental biology ,chemistry ,biology.protein ,Glycolipids ,Glycoprotein ,HeLa Cells - Abstract
Shiga toxin (STx) is a virulence factor produced by enterohemorrhagic Escherichia coli. STx is taken up by mammalian host cells by binding to the glycosphingolipid (GSL) globotriaosylceramide (Gb3; Galα1-4Galβ1-4Glc-ceramide) and causes cell death after its retrograde membrane transport. However, the contribution of the hydrophobic portion of Gb3 (ceramide) to STx transport remains unclear. In pigeons, blood group P1 glycan antigens (Galα1-4Galβ1-4GlcNAc-) are expressed on glycoproteins that are synthesized by α1,4-galactosyltransferase 2 (pA4GalT2). To examine whether these glycoproteins can also function as STx receptors, here we constructed glycan-remodeled HeLa cell variants lacking Gb3 expression but instead expressing pA4GalT2-synthesized P1 glycan antigens on glycoproteins. We compared STx binding and sensitivity of these variants with those of the parental, Gb3-expressing HeLa cells. The glycan-remodeled cells bound STx1 via N-glycans of glycoproteins and were sensitive to STx1 even without Gb3 expression, indicating that P1-containing glycoproteins also function as STx receptors. However, these variants were significantly less sensitive to STx than the parent cells. Fluorescence microscopy and correlative light EM revealed that the STx1 B subunit accumulates to lower levels in the Golgi apparatus after glycoprotein-mediated than after Gb3-mediated uptake but instead accumulates in vacuole-like structures probably derived from early endosomes. Furthermore, coexpression of Galα1-4Gal on both glycoproteins and GSLs reduced the sensitivity of cells to STx1 compared with those expressing Galα1-4Gal only on GSLs, probably because of competition for STx binding or internalization. We conclude that lipid-based receptors are much more effective in STx retrograde transport and mediate greater STx cytotoxicity than protein-based receptors.
- Published
- 2020
7. Atg9a deficiency causes axon-specific lesions including neuronal circuit dysgenesis
- Author
-
Shigeki Aoki, Keiji Tanaka, Chigure Suzuki, Yasuo Uchiyama, Tatsuya Saitoh, Tomohisa Nanao, Kenji Sakimura, Kentarou Ozawa, Masaaki Komatsu, Takehiko Sunabori, Isei Tanida, Soichirou Kakuta, and Junji Yamaguchi
- Subjects
0301 basic medicine ,Neurite ,Research Paper - Basic Science ,Vesicular Transport Proteins ,Autophagy-Related Proteins ,degeneration ,Anterior commissure ,Nerve fiber ,Biology ,spongiosis ,Corpus Callosum ,Purkinje Cells ,03 medical and health sciences ,Dysgenesis ,Western blot ,conditional knockout mice ,Sequestosome-1 Protein ,Conditional gene knockout ,Neurites ,medicine ,Animals ,Axon ,Molecular Biology ,Cells, Cultured ,Mice, Knockout ,axon ,selective autophagy ,Integrases ,medicine.diagnostic_test ,Autophagy ,diffusion tensor MRI ,Intracellular Signaling Peptides and Proteins ,Membrane Proteins ,Proteins ,Cell Biology ,Anatomy ,Atg9a ,dysgenesis of commissure fibers ,nonselective autophagy ,Axons ,Cell biology ,Phenotype ,030104 developmental biology ,medicine.anatomical_structure ,Nerve Net - Abstract
Conditional knockout mice for Atg9a, specifically in brain tissue, were generated to understand the roles of ATG9A in the neural tissue cells. The mice were born normally, but half of them died within one wk, and none lived beyond 4 wk of age. SQSTM1/p62 and NBR1, receptor proteins for selective autophagy, together with ubiquitin, accumulated in Atg9a-deficient neurosoma at postnatal d 15 (P15), indicating an inhibition of autophagy, whereas these proteins were significantly decreased at P28, as evidenced by immunohistochemistry, electron microscopy and western blot. Conversely, degenerative changes such as spongiosis of nerve fiber tracts proceeded in axons and their terminals that were occupied with aberrant membrane structures and amorphous materials at P28, although no clear-cut degenerative change was detected in neuronal cell bodies. Different from autophagy, diffusion tensor magnetic resonance imaging and histological observations revealed Atg9a-deficiency-induced dysgenesis of the corpus callosum and anterior commissure. As for the neurite extensions of primary cultured neurons, the neurite outgrowth after 3 d culturing was significantly impaired in primary neurons from atg9a-KO mouse brains, but not in those from atg7-KO and atg16l1-KO brains. Moreover, this tendency was also confirmed in Atg9a-knockdown neurons under an atg7-KO background, indicating the role of ATG9A in the regulation of neurite outgrowth that is independent of autophagy. These results suggest that Atg9a deficiency causes progressive degeneration in the axons and their terminals, but not in neuronal cell bodies, where the degradations of SQSTM1/p62 and NBR1 were insufficiently suppressed. Moreover, the deletion of Atg9a impaired nerve fiber tract formation.
- Published
- 2018
8. Optimization of mNeonGreen for Homo sapiens increases its fluorescent intensity in mammalian cells
- Author
-
Isei Tanida, Yasuo Uchiyama, Emiko Tanida-Miyake, and Masato Koike
- Subjects
0301 basic medicine ,Molecular biology ,lcsh:Medicine ,Biochemistry ,Green fluorescent protein ,Database and Informatics Methods ,Plasmid ,Fluorescence Microscopy ,Chlorocebus aethiops ,Coloring Agents ,lcsh:Science ,Energy-Producing Organelles ,Microscopy ,Multidisciplinary ,COS cells ,Expression vector ,biology ,Chemistry ,Light Microscopy ,Transfection ,Cell biology ,Mitochondria ,COS Cells ,Antibody ,Cellular Structures and Organelles ,Sequence Analysis ,Plasmids ,Research Article ,Bioinformatics ,Imaging Techniques ,Green Fluorescent Proteins ,Bioenergetics ,DNA construction ,Green Fluorescent Protein ,03 medical and health sciences ,Amino Acid Sequence Analysis ,Complementary DNA ,Fluorescence Imaging ,Animals ,Humans ,Codon ,HEK 293 cells ,lcsh:R ,Biology and Life Sciences ,Proteins ,DNA ,Cell Biology ,Research and analysis methods ,Luminescent Proteins ,030104 developmental biology ,HEK293 Cells ,Molecular biology techniques ,Plasmid Construction ,biology.protein ,lcsh:Q ,Sequence Alignment - Abstract
Green fluorescent protein (GFP) is tremendously useful for investigating many cellular and intracellular events. The monomeric GFP mNeonGreen is about 3- to 5-times brighter than GFP and monomeric enhanced GFP and shows high photostability. The maturation half-time of mNeonGreen is about 3-fold faster than that of monomeric enhanced GFP. However, the cDNA sequence encoding mNeonGreen contains some codons that are rarely used in Homo sapiens. For better expression of mNeonGreen in human cells, we synthesized a human-optimized cDNA encoding mNeonGreen and generated an expression plasmid for humanized mNeonGreen under the control of the cytomegalovirus promoter. The resultant plasmid was introduced into HEK293 cells. The fluorescent intensity of humanized mNeonGreen was about 1.4-fold higher than that of the original mNeonGreen. The humanized mNeonGreen with a mitochondria-targeting signal showed mitochondrial distribution of mNeonGreen. We further generated an expression vector of humanized mNeonGreen with 3xFLAG tags at its carboxyl terminus as these tags are useful for immunological analyses. The 3xFLAG-tagged mNeonGreen was recognized well with an anti-FLAG-M2 antibody. These plasmids for the expression of humanized mNeonGreen and mNeonGreen-3xFLAG are useful tools for biological studies in mammalian cells using mNeonGreen.
- Published
- 2018
9. Autophagy Deficiency in Renal Proximal Tubular Cells Leads to an Increase in Cellular Injury and Apoptosis under Normal Fed Conditions
- Author
-
Juan Alejandro Oliva Trejo, Isei Tanida, Soichiro Kakuta, Chigure Suzuki, and Yasuo Uchiyama
- Subjects
0301 basic medicine ,Autophagosome ,Aging ,Pathology ,030232 urology & nephrology ,Apoptosis ,urologic and male genital diseases ,Kidney ,Autophagy-Related Protein 7 ,lcsh:Chemistry ,Kidney Tubules, Proximal ,renal proximal tubular cell ,Mice ,0302 clinical medicine ,gene knockout mouse ,Sequestosome-1 Protein ,Hepatitis A Virus Cellular Receptor 1 ,lcsh:QH301-705.5 ,Spectroscopy ,Mice, Knockout ,education.field_of_study ,TUNEL assay ,Chemistry ,Acute kidney injury ,General Medicine ,Computer Science Applications ,medicine.anatomical_structure ,Knockout mouse ,Atg7 ,Microtubule-Associated Proteins ,autophagy ,medicine.medical_specialty ,Article ,Catalysis ,Inorganic Chemistry ,03 medical and health sciences ,Sequestosome 1 ,medicine ,Animals ,Physical and Theoretical Chemistry ,education ,Molecular Biology ,atg7 ,urogenital system ,Organic Chemistry ,Autophagy ,medicine.disease ,030104 developmental biology ,lcsh:Biology (General) ,lcsh:QD1-999 - Abstract
Renal proximal tubular epithelial cells are significantly damaged during acute kidney injury. Renal proximal tubular cell-specific autophagy-deficient mice show increased sensitivity against renal injury, while showing few pathological defects under normal fed conditions. Considering that autophagy protects the proximal tubular cells from acute renal injury, it is reasonable to assume that autophagy contributes to the maintenance of renal tubular cells under normal fed conditions. To clarify this possibility, we generated a knock out mouse model which lacks Atg7, a key autophagosome forming enzyme, in renal proximal tubular cells (Atg7flox/flox, KAP-Cre+). Analysis of renal tissue from two months old Atg7flox/flox, KAP-Cre+ mouse revealed an accumulation of LC3, binding protein p62/sequestosome 1 (a selective substrate for autophagy), and more interestingly, Kim-1, a biomarker for early kidney injury, in the renal proximal tubular cells under normal fed conditions. TUNEL (TdT-mediated dUTP Nick End Labeling)-positive cells were also detected in the autophagy-deficient renal tubular cells. Analysis of renal tissue from Atg7flox/flox, KAP-Cre+ mice at different age points showed that tubular cells positive for p62 and Kim-1 continually increase in number in an age-dependent manner. Ultrastructural analysis of tubular cells from Atg7flox/flox, KAP-Cre+ revealed the presence of intracellular inclusions and abnormal structures. These results indicated that autophagy-deficiency in the renal proximal epithelial tubular cells leads to an increase in injured cells in the kidney even under normal fed conditions.
- Published
- 2019
- Full Text
- View/download PDF
10. Phospholipase C-related catalytically inactive protein, a novel microtubule-associated protein 1 light chain 3-binding protein, negatively regulates autophagosome formation
- Author
-
Akiko Mizokami, Masato Hirata, Takashi Kanematsu, Kae Harada, Hiroshi Takeuchi, Miho Matsuda, Isei Tanida, and Hisanori Umebayashi
- Subjects
Immunoprecipitation ,Molecular Sequence Data ,Biophysics ,Phospholipase ,Biochemistry ,Catalysis ,Green fluorescent protein ,Mice ,Phagosomes ,Autophagy ,Animals ,Amino Acid Sequence ,Molecular Biology ,Cells, Cultured ,Adaptor Proteins, Signal Transducing ,Mice, Knockout ,biology ,Phospholipase C ,Binding protein ,Membrane Proteins ,Cell Biology ,Fibroblasts ,Cell biology ,Cytoskeletal Proteins ,Type C Phospholipases ,biology.protein ,Apoptosis Regulatory Proteins ,Protein A ,Microtubule-Associated Proteins ,Intracellular - Abstract
Upon starvation, cells undergo autophagy, an intracellular bulk-degradation process, to provide the required nutrients. Here, we observed that phospholipase C-related catalytically inactive protein (PRIP) binds to microtubule-associated protein 1 light chain 3 (LC3), a mammalian autophagy-related initiator that regulates the autophagy pathway. Then, we examined the involvement of PRIP in the nutrient depletion-induced autophagy pathway. Enhanced colocalization of PRIP with LC3 was clearly seen in nutrient-starved mouse embryonic fibroblasts under a fluorescent microscope, and interaction of the proteins was revealed by immunoprecipitation experiments with an anti-LC3 antibody. Under starvation conditions, there were more green fluorescent protein fused-LC3 dots in mouse embryonic fibroblasts from PRIP-deficient mice than in fibroblasts from wild type cells. The formation of new dots in a single cell increased, as assessed by time-lapse microscopy. Furthermore, the increase in autophagosome formation in PRIP-deficient cells was notably inhibited by exogenously overexpressed PRIP. Taken together, PRIP is a novel LC3-binding protein that acts as a negative modulator of autophagosome formation.
- Published
- 2013
- Full Text
- View/download PDF
11. Erratum
- Author
-
Sascha Martens, Masashi Narita, Rajkumar Cheluvappa, Kevin A. Roth, Ta Yuan Chang, Kartik Venkatachalam, Chang-Shen Lin, Sharon G. Adler, Flaminia Pavone, Dianwen Ju, Michelle A. Ozbun, Michael R. Duchen, Shu Feng Zhou, Wei-Guo Zhu, Aaron Di Antonio, Defeng Wu, Taixing Cui, Xu Guang Guo, Zhiping Xie, Lorena García Nannig, Eloy Bejarano, Stéphane D. Lemaire, Petro Starokadomskyy, Hyung Ryong Kim, Mario Pinar, Rebecca T. Marquez, Zvenyslava Husak, Anthony R. White, Joanna Poulton, Antonis S. Zervos, Shweta Sharma, Jochen Walter, Nicholas T. Ktistakis, Christopher H.K. Cheng, Sunhee Lee, Yuen Li Chung, Howard O. Fearnhead, Young J. Oh, Ivano Amelio, Guillermo A. Blanco, Jan Simak, Junfang Wu, Yingying Lu, Mary Kate McBrayer, Soo Han Bae, Ichizo Nishino, Hong-Ming Hu, Benjamin R. Underwood, Tomonori Kimura, Zexian Liu, Savithrama P. Dinesh-Kumar, Qian Yang, Andreas Kern, Hsing Jien Kung, Jan B. Parys, Cam Patterson, Celine Perier, Toshiro Okazaki, Daisuke Koya, Avinash Sonawane, Cédric Cleyrat, Robert I. Richards, Kai Y. Soo, Rodrigo Mora-Rodriguez, Gigi N.C. Chiu, Moon Moo Kim, Vladimir N. Uversky, Shengfang Ge, Matthew T. V. Chan, Irene Kyrmizi, Lara Gibellini, Ángela M. Valverde, Erik Norberg, Fan Zhang, Jan C. Koch, Alec C. Kimmelman, Jingfang Ju, Jie Bai, Lei Duan, Paulina Ordonez, Shuwen Liu, Wolfdieter Springer, Eric Deutsch, Elena Ortona, Jose M. Seguí-Simarro, Vinay Choubey, Leonidas Stefanis, Robert G. Hawley, Claudia Bincoletto, Xian-Hui He, Zhifen Yang, Thomas M. Durcan, Martine Biard-Piechaczyk, Kui Lin, Hongming Pan, Konstantinos Kambas, Cristina Muñoz-Pinedo, Marta Magariños, Yoshinori Takahashi, Adrienne M. Gorman, Philippe Gailly, Takahiko Akematsu, Justine D. Mintern, Liang Xu, Tetsuo Shioi, Luis M. Botana, Yule Liu, Yong Yeon Cho, Jinzhi Lei, Eung Kweon Kim, Alakananda Basu, Vikash Kumar Dubey, Candelaria Gomez-Manzano, Avital Eisenberg-Lerner, Chuan-Ming Xie, Wenjie Dai, Pedro Gonzalez-Alegre, Maria Condello, Zheng-Hong Qin, Zhi-Min Yuan, Catherine Andreadi, Anna Rita Migliaccio, Chong Liu, Michaël Boyer-Guittaut, Melanie Denizot, Esperanza Arias, Greet Van den Berghe, Guomei Tang, Timothy P. Devarenne, Xianyong Sheng, Louis R. Lapierre, J. Wade Harper, Zuzana Storchova, Aileen R. Ariosa, Sug Hyung Lee, Qi Zeng, Godefridus J. Peters, Daniela L. Papademetrio, Alexandre Arcaro, Zhiyuan Yao, Pablo Iribarren, Mario Chiariello, Maria Rosaria Torrisi, Parimal Karmakar, Yong Huang, Sebastiano Sciarretta, Nathalie Andrieu-Abadie, László Fésüs, Patricia Boya, Ruediger Rudolf, Leonor Miller-Fleming, Vasilis J. Promponas, Juan Segura-Aguilar, Paula Daza, Shiow Ju Lee, Songshu Meng, Paul K. Herman, Ludwig Eichinger, Ye-Guang Chen, Kay F. Macleod, Thomas Simmet, Cristina Corral-Ramos, Claudio Brancolini, Jun Ren, Ying Jiang, Benoît Derrien, Xiao Fang Yu, Qing Zhong, Zong Wan Mao, Xingcong Ren, Armando A. Genazzani, Marina Pierdominici, Sanbing Shen, Sandra Moreno, Hana Algül, Maurizio Renna, Ricardo Sánchez-Prieto, Ashok K. Saluja, Yasuo Uchiyama, Pope L. Moseley, Victor E. Dosenko, Chun-Feng Liu, Bakhos A. Tannous, Efthimios Sivridis, Baharia Mograbi, Michiko Shintani, Amanda S. Bess, Rodrigo Portes Ureshino, Avnika A. Ruparelia, Paul Hofman, Eric Chevet, Martha M. Monick, Hong Gang Wang, Daping Fan, Jorge Moscat, Giuseppe Matarese, Consiglia Pacelli, Young Seok Cho, Miriam Cnop, Stefan Böckler, Nikolai V. Gorbunov, Christina J. Sigurdson, Hang T.T. Nguyen, Aurélie François, Katarina Kågedal, Sam Gandy, Silvia Campello, Alain Bruhat, Filomena Fiorito, Hua Feng, Man Tian Mi, Gian Maria Fimia, Masaki Tanaka, Guofei Zhou, José L. Crespo, Heinz Jungbluth, Anna Chiara Nascimbeni, Arianne L. Theiss, Svetlana Dokudovskaya, Mar Lorente, Sergio Lavandero, Yu Xia Zhao, Fangming Lin, Yuchen Feng, Gad Galili, Silvia Cetrullo, Paula I. Moreira, Dhyan Chandra, Dimitrios J. Stravopodis, Roberta A. Gottlieb, Gregory A. Taylor, Longping Wen, Faqiang Li, Marco Sardiello, Umesh K. Jinwal, Francesca Belleudi, Lan Tan, Livia Di Renzo, Tamas Korcsmaros, Xinbing Sui, Douglas R. Green, Guillermo Mazzolini, Hervé Le Stunff, Kelly S. Doran, Mary E. Choi, Carlos S. Subauste, Natalia Rodriguez-Muela, Nicholas J. Talbot, Marta Palmieri, Sonia Hernández-Tiedra, Ligia C. Gomes, Irving M. Shapiro, Makoto Ubukata, Mario P. Tschan, Baris Bingol, Benjamin Loos, Terry Kwok, Luca M. Neri, Sreejayan Nair, Michele Wolfe Bianchi, Ralf Erdmann, Alexander Greenhough, Neeraj Vij, Jeong Hun Kim, Satoaki Matoba, Bo Liu, George R. Beck, Michael Moore, Vrajesh V. Parekh, Kyle A. Bauckman, Li-Lin Du, Mikihiro Fujiya, Yan G. Zhao, Renaud Legouis, Jiangwei Zhang, Kailiang Jia, Nadezda Apostolova, Sehamuddin Galadari, Khosrow Adeli, Ming Yong Zhang, Carmela Fusco, Angel Ortega, Anna Pensalfini, Zsuzsanna Szatmári, Marco Tafani, Isabella Ceccherini, Anne Hamacher-Brady, Kuen Jer Tsai, Anita C. Truttmann, Franco Fortunato, Keisuke Miyazawa, Chunhai Fan, Berge A. Minassian, Jian Zhang, Frank A. Anania, Heesun Cheong, Amal O. Amer, Ing Swie Goping, Won-Ki Huh, Anita Solhaug, Joan Cl ria, Laurent Le Cam, Seungmin Hwang, Karen L. Wright, Antonella De Matteis, Troy T. Rohn, Ivana Bjedov, Subbiah Pugazhenthi, Hal E. Broxmeyer, Xue Yuan Bai, Koenraad Norga, Minnie M. Sarwal, Daniel F. Schorderet, Ioannis P. Nezis, Mei Qing Wang, Jun Hee Lee, Yong J. Lee, David A. Tumbarello, Fernando Macian, Joern Dengjel, Dmitry V. Bulavin, Andrew J. Halayko, Ben Berkhout, Aseem Pandey, Santosh Kesari, Karin Przyklenk, Elena V. Tchetina, Matthew L. Albert, Laura Segatori, Joel N. Meyer, Mustapha Rouis, Éva Margittai, Ashish Jain, David Hahn, Thomas Vaccari, Lori R. Covey, Ghanshyam Swarup, Kuo Yang Huang, Gennaro Napolitano, Sam W. Lee, Seong Who Kim, Alberto Anel, Vladimir V. Rogov, Laura A. Carleton, Amine Belaid, Byoung Kuk Jang, Sheng-Han Kuo, Patricia L. Yeyati, Jae U. Jung, Teresa Zoladek, Sabrina Di Bartolomeo, Clémence Richetta, Peixin Yang, Daniela Trisciuoglio, Hye Seung Jung, Katsumi Higaki, Eui-Bae Jeung, Ivan Topisirovic, Isabella Caniggia, Susan E. Logue, Issidora S. Papassideri, Lynda A. Morrison, Caihong Wang, Graeme Sargent, Beth Levine, Mingxiang Ye, David M. Sabatini, Consuelo Amantini, Julio A. Aguirre-Ghiso, Lawrence H. Boise, Patricia Silvia Romano, Sean T. Sweeney, Takayuki Tsukuba, Reinhard Dechant, Benoit Barbeau, Marta Martinez-Vicente, Kuo How Huang, Edésio José Tenório de Melo, Faustino Mollinedo, José M. Fuentes, Joaquín Jordán, Dong-Hyung Cho, Dexian Zheng, Jeroen J.M. Hoozemans, Zhong Chen, Waleska Kerllen Martins, Abraham Acevedo Arozena, Marcos P. Thomé, Gordon C. Shore, Fabienne C. Fiesel, Teng Jiang, Feng Han, Marc Poirot, Anne Sophie Nicot, Eileen White, Olivier Feron, Arthur I. Cederbaum, Wen Bin Qian, Yingjie Sun, Rejko Krüger, Shingo Kajimura, Jianzhen Xu, Shang Der Chen, Maximiliano G. Gutierrez, Zhengping Yu, Jiaren Sun, Utpal Sen, Giovanna Galliciotti, Hilde Nilsen, Benjamin T. Kopp, Benedikt Westermann, Inmaculada Galindo, Eeva-Liisa Eskelinen, Rubem F. S. Menna-Barreto, Guillermo Mariño, Andrea Ballabio, Izabela Poprawa, Yanjin Zhang, Clay F. Semenkovich, Martin E. Fernandez-Zapico, Helin Vakifahmetoglu-Norberg, Hongchi Jiang, Eugenia Morselli, Angelo A. Manfredi, Marianne Boes, Han-Jung Chae, Covadonga Alonso, Min Chen, Safia Costes, David Kessel, Rakesh Kumar, Yang Zhang, Reinhild Prange, Vassiliki E. Mpakou, Laura Santambrogio, Javier E. Irazoqui, Anna Skwarska, Junichi Sadoshima, Rika Umemiya-Shirafuji, Michael I. Koukourakis, Norma Maugeri, Yuqing Wang, Pedro R. Cutillas, Jiqin Lian, Jiri Stulik, Takashi Ueno, Craig Montell, Rena Balzan, Meiyan Jin, Mara C. Duncan, Cathleen R. Carlin, Yasuo Yanagi, Maite G. Fernandez-Barrena, Yuyan Xiong, Martin Graef, Wei Yuan Yang, Renato V. Iozzo, Mark Screen, Patrick Brest, Haichao Wang, Ming Tan, Werner J. Kovacs, Weili Shen, Alessandro Fraldi, Paul Saftig, Alberto Faggioni, Krisna Prak, Christos E. Zois, Timothy E. Weaver, Marc Lecuit, Yu-Ying He, Michele Caraglia, Walter Balduini, M. Isabel G. Roncero, B. Schneider, Monika Cahova, Mathias Faure, Chihiro Sasakawa, Simon Michaeli, Sandy Giuliano, Dario C. Altieri, Eun-Kyeong Jo, Myung-Shik Lee, Carol Imbriano, John H. Brumell, Gustavo H. Goldman, Yan Wang, Junyan Shi, Quan Chen, Jayanta Debnath, Yonggeun Hong, Mohamed Amessou, Richard W. Wong, Robert E. Burke, Mauro De Santi, Trevor G. Shepherd, Anna Maria Joseph, Wouter G. van Doorn, Erkang Fei, Huey Lan Huang, F. Gisou van der Goot, Xinfeng Liu, Alexandru Almasan, Akiko Maeda, Yu Qiu, Yaohua Wu, Annie Sittler, Wen-Xing Ding, Wenhua Zhu, Hung-Jen Liu, Moisés Martínez-Velázquez, Jeffery S. Cox, Seung Yong Yoon, Concepcio Marin, Wilian A. Silveira, Fulvio Chiacchiera, W. Douglas Fairlie, Jian Xin Gao, Shuilong Leng, Nathan R. Brady, Josef M. Penninger, Puran Singh Sijwali, Florian Gruber, Tibor Vellai, Jiunn-Liang Ko, Laura Korhonen, Slimane Ait-Si-Ali, Hirokazu Arimoto, Alberto M. Martelli, Teresa L. M. Thurston, Chuanshan Xu, Kathrin Pallauf, Eduardo Couve, Shweta Saran, Lionel Blanc, Maylin Almonte-Beceril, Yong-Keun Jung, Lena Lavie, Junsoo Park, Camilla Palumbo, Claire H. Mitchell, Sophie Pattingre, Guillermo Velasco, Steve S.-L. Chen, Xiu-Fen Ming, Xin Qi, Vania Gelmetti, Nicolas Dupont, Soraya S. Smaili, Chinnaswamy Jagannath, Uta Dahmen, Daolin Tang, Rodrigo Franco, John H. Kehrl, Xiaonan Dong, Carsten Sachse, Jeff Kuret, Genzou Takemura, Supawadee Sukseree, Joëlle Botti, W. Haung Yu, Aurelia Lugea, Scott J. Bultman, Divaker Choubey, Frank A. Sinicrope, You-Wen He, Jian Wu, Yoshitaka Isaka, Geert Bultynck, Giuseppe Merla, Luigi Maiuri, Sonia Melino, Hannelore Maes, Daniele Lettieri Barbato, Ian G. Ganley, Zhihong Yang, Daniel Hofius, Kimberly McCall, Peiwen Chen, Istvan Lekli, Alicia Rosello, Eric Ghigo, Atsushi Kuno, Iman Tavassoly, Chris Albanese, Agustín Aranda, Salvatore Pepe, Hong Jiang, Henri Batoko, Giovanna Elvira Granato, Vincent Zecchini, Stephen E. Girardin, Maria T. Diaz-Meco, Philippe Marambaud, G. Amadoro, Sangeeta Khare, Christelle Koechlin-Ramonatxo, Emery H. Bresnick, Christian Behl, Mikio Nishimura, Julien Puyal, Wenjie Guo, Hsinyu Lee, Carolyn M. Sue, Derrick Gibbings, Alina Maloyan, Philippe Pierre, Serge N. Manié, Gerry Melino, Elizabeth A. Woodcock, Roberto Ciarcia, Liwen Jiang, Michael C. Kruer, Vladimir Trajkovic, Yunjiao Zhang, Nina Raben, Beata Pajak, Michael J. Ragusa, Riccardo Autelli, Kelly Jean Thomas, Suzana Gispert, Wei Li Zhao, Cheol Hyeon Kim, Pothana Saikumar, Arsenio Fernández-López, Juliano Machado, Valentina Iovane, Cai Ping Tan, Carmine Settembre, Neelam Azad, Yohta Shimada, Shivendra V. Singh, Hai Rao, Hirosato Mashima, Michael T. Stang, Yasuhito Sakuraba, Gemma Fabriàs, Tuck Wah Soong, Didac Carmona-Gutierrez, Ilse Vanhorebeek, F. Javier Oliver, Mondira Kundu, Alfonso Schiavi, Dan Lindholm, José L. Revuelta, Jason S. King, Susana Castro-Obregón, Paul Digard, Hua Zhu, Komal Raina, Yun Dai, Ruben K. Dagda, Nuria Martinez-Lopez, Andrea A. Gust, Lucia Notterpek, Robert Clarke, Manon E. Wildenberg, Mingzhou Chen, Leticia Reyes, Laura Berliocchi, John J. McMahon, Hongzhuan Chen, E.M. Nolte, Stefan W. Ryter, Fulvio Reggiori, Jiefei Geng, Michael A. Mandell, John H. Fingert, Holger Prokisch, Marina Jendrach, Søren R. Paludan, Elizabeth P. Henske, Ricardo Gargini, Wei-Xing Zong, Susmita Kaushik, Michael Overholtzer, Paul W. Sylvester, Daniel E. Voth, Canhua Huang, Andrea Boman, Gérard Lizard, Rut Valdor, Marc Flajolet, Graham S. Taylor, Nicola Di Daniele, Leonardo H. Travassos, Ying Yang, Anumantha G. Kanthasamy, Hasan Mukhtar, Yuhua Zhu, Noor Gammoh, Ignacio Vega-Naredo, Victoria Ryabovol, Sara W. Bird, Gang Min Hur, Qun-Ying Lei, Fan Yi, Laura Caberlotto, Maria F. Galindo, Bilal Piperdi, Leonidas C. Platanias, P. Hande Özdinler, Régis Delage-Mourroux, Julio Madrigal-Matute, Xu Liu, Nagio Takigawa, Aurora Pujol, Marta Margeta, Hee Jeong Kong, Christian Behrends, Michael Thumm, Shirley Luckhart, Emilio Clementi, John W. Steele, Liliana Schaefer, Philip L. Lorenzi, Chao-Yu Miao, She Min Lu, Jane E. Ishmael, Jin Hyoung Kim, V. Izzo, Yanming Wang, Balindiwe J.N. Sishi, Vincent Galy, Andras Perl, Shouqing Luo, Giovanni Vitale, Yongsheng Che, Rodrigo Troncoso, Liu Yang, Thomas J. Begley, Sebastien G. Bouret, Elizete Rizzo, James M. Piret, Junjun Wang, Herman P. Spaink, Thomas S. Jacques, Robin F. B. Turner, Young H. Lee, Eva Szegezdi, Daphne R. Goring, Manish K. Aghi, Rui Kang, Bart Staels, Midori Umekawa, Delia Goletti, Robert J. Bryson-Richardson, Ubaldo E. Martinez-Outschoorn, Luisa Dalla Valle, Giovanni Luca Gravina, Emad S. Alnemri, Maria Kaparakis-Liaskos, Konstantinos Ritis, Shalmoli Bhattacharyya, Alessandra Bolino, Xiaonan Zhao, Yoshihisa Watanabe, Christian Ungermann, Juan L. Iovanna, Katherine Williams, Ken Shirabe, Teresa S. Hawley, Sara Cherry, Ryuichiro Atarashi, Kozo Hamada, Seamus J. Martin, Shigeru Oshima, Mario Pende, Illana Gozes, Michel A. Duchosal, John J. Shacka, Shunhei Yamashina, Kithiganahalli Narayanaswamy Balaji, Richard L. Proia, Besim Ogretmen, Fang Hua, Koichi Araki, Charles Grose, Jia Luo, Helen K. W. Law, Charles Swanton, Liat Drucker, Guo Zhang, Zhizhuang J. Zhao, Anne K. Kenworthy, Javier A. Menendez, Gary Grant, Stig U. Andersen, Frank Lafont, Aparna Lakkaraju, Taijoon Chung, Leticia A.M. Carneiro, Monique Bernard, Gang Chen, Stephen W.G. Tait, Aimee L. Edinger, Jeffrey P. MacKeigan, Paul A. Ney, Mireia Niso-Santano, Valeria Crippa, Andreas S. Reichert, Isabelle Dugail, Jon D. Lane, Farida V. Minibayeva, Gianluca Tettamanti, Scott Pattison, Péter Lõrincz, Kamal Chowdhury, Ulrich E. Schaible, Maria Agnello, Paolo Pinton, Niels Jessen, Lei Guo, Kwang-Huei Lin, David N. Zacks, Ying Jan Wang, Simone Fulda, John J. Lemasters, Andrea Viale, Anna Maria Marconi, Valerie Askanas, Yoshitaka Nagai, François M. Vallette, Joan K. Heath, Srinivasan Dasarathy, Soo-Youl Kim, Günter U. Höglinger, Tamara Kravic-Stevovic, Iraide Alloza, Tiago F. Outeiro, Ana Serrano-Puebla, Elena A. Minina, Terrence M. Donohue, Ming Guo, Alexandra Giatromanolaki, Abdel Halim Harrath, Ken Sato, Anne Elisabeth Theron, Usha P. Andley, Claudio Cardinali, Maija Pesonen, Penny E. Lovat, Chanhee Kang, Sabah N. A. Hussain, Lisa A. Brennan, Jose A. Tapia, Christoph Becker, Huixin Yu, Pei-Yu Wang, Bertrand Joseph, Zhen Yan, Georgia Minakaki, Ricardo Escalante, Ralph A. Nixon, Katsuhiko Asanuma, M. Helena Vasconcelos, David J. Reiner, Shengkan Jin, David Dávila, Theo Rein, Balakrishna L. Lokeshwar, Antonio Miranda-Vizuete, Carl Ward, Vito Turk, Frederick D. Quinn, Katja Köhler, Masaru Harada, Kathleen Boesze-Battaglia, Fraser P. Coxon, Paulo R. Jannig, Miguel A. Peñalva, Manjula Kalia, Marco Corazzari, Chunjuan Song, Xianghua Yan, Lilach Toker, Benjamin Pineda, Vanessa Ginet, Ye Xu, Chun Jung Chen, Roberto Towns, Amy A. Kiger, Rajagopal Ramesh, Maria Rita Rippo, Joseph A. Hill, Boris Zhivotovsky, Peter Speck, Ya Hua, Peter J. Roach, Fabio Penna, Kasper M.A. Rouschop, Jeng-Jer Shieh, Maria Angeles Mena, Mei Zhao, Sonia Rocha, Xin Wen, Sylvain Lefort, Michael Scharl, Ramnik J. Xavier, Alan Cheng, Marion Bouchecareilh, Stella Y. Lee, Maria Xilouri, Qi Chen, Claudia Spies, Pengfei Ge, Natascia Ventura, Luca Galluzzi, Yau Hung Chen, Jing Pu Zhang, Diego Albani, Dingzhong Tang, Nikolai Engedal, Stefania Meschini, Maria Lyngaas Torgersen, Shibu M. Poulose, Jean-Paul Decuypere, Ziheng Xu, Jocelyn Laporte, Thierry Arnould, Albert Haas, Ida J. van der Klei, Agustín Hernández, Dong Wook Shin, Per E. Stromhaug, Valentín Ceña, Ugo Pagnini, Karolina Pakos-Zebrucka, Blagovesta Popova, Lisa M Lindqvist, Sangita C. Sinha, Yuguang Shi, Zvonimir Marelja, Robin Candau, Xin Wang, Evelina Gatti, Olatz Pampliega, Michael P. Lisanti, Elena Tamagno, Mei Lan Tan, Gary Warnes, Zdena Palková, Shigeomi Shimizu, Ingo Schmitz, Tino Kurz, Soledad Matus, Gopal Chakrabarti, Joseph J.Y. Sung, Beáta G. Vértessy, Giuliana Cassinelli, Giovanni Benard, Yin Chen, Emma Colucci-Guyon, Craig Blackstone, Lizhi Cao, Sebastian Schuck, Qingqiu Gong, Theocharis Panaretakis, Jayoung Choi, Sven R. Carlsson, Libuše Váchová, Raymond Chuen-Chung Chang, Yang Liu, Zheng Dong, Qinghua Shi, Hélène Duez, Tiziana Bachetti, Axel H. Schönthal, Sumit Sahni, Bo Wang, Naomichi Matsumoto, Markus Rehm, Liliana Torosantucci, Toren Finkel, Yi Hsin Tseng, Hsiang Cheng Chi, Fang Lin, Tony George Jacob, Ju-Xian Song, Alessandro Fanzani, Marc Tatar, Paola Costelli, Rubén Gómez-Sánchez, Yunfei Wen, Juha J. Hulmi, Francesca V. Mariani, Min Zeng, Chiung Chyi Shen, Carine Michiels, Yan Burelle, Andreas L. Serra, Goran Petrovski, Kwang Woon Kim, Paula Ludovico, Darius Ebrahimi-Fakhari, Yee Joo Tan, Luisa De Martino, Alvaro Glavic, Pierre Lapaquette, Edmund B. Rucker, Andreas Mayer, Shigeko Yamashiro, Scott K. Powers, Robert M. Gogal, Ebru Goncu, Yuichiro J. Suzuki, Anna Maria Giammarioli, Claudio Hetz, Eric H. Baehrecke, Cheryl L. Walker, Cinzia Lanzi, Deepti S. Wilkinson, Ralph Feuer, Long Yi, Virawudh Soontornniyomkij, Nektarios Tavernarakis, Nobuyuki Nukina, Elisabetta Ferraro, Thomas Wollert, Vassiliki Karantza, Simon Wilkinson, Yong Tae Kwon, Panagiotis D. Velentzas, Jong-In Park, Huu Phuc Nguyen, Miriam J. Schönenberger, Marcello Chieppa, Thomas A. Ferguson, Behzad Yeganeh, Saurabh Chatterjee, Anika Nagelkerke, Ju Hong Jeon, David W. Russ, Jeff W. Chen, Verónica I. Dumit, Chuangui Wang, Stephen C. Pak, Georgios Chamilos, Vijittra Leardkamolkarn, L. Ashley Cowart, Miguel A. Martín-Acebes, Andrea Cossarizza, László Orosz, X. Charlie Dong, Kei Watase, Yasuko Rikihisa, Santiago Rodríguez de Córdoba, Yu Jen Chen, Andrew P. Lieberman, Peter G.H. Clarke, Guylène Page, Babak Razani, Franziska Wild, Guang Zhou Zhou, Tsui-Fen Chou, Gen Sheng Wu, Daniel Johnson, Jiwu Wei, Rani Ojha, Marco Molinari, Manolis Fanto, Yongjun Jiang, Nadine Camougrand, Rong-Rong He, Ivan Dikic, Candece L. Gladson, Naoki Suzuki, Shiming Liu, Felipe X. Pimentel-Muiños, Alicia Meléndez, José Antonio Sánchez-Alcázar, Maho Hamasaki, Carmen Ruiz-Roldán, Hana Schmeisser, Margarita Villar, Vinod Sundaramoorthy, Maria Beatrice Morelli, Naweed I. Naqvi, Jochen Klucken, Nirmala Parajuli, Rodney J. Devenish, Mari L. Shinohara, J. Lindsay Whitton, Marie-Josée Boucher, Jeroen Roelofs, Xiao Hong Liu, Saverio Minucci, Germán Bou, Katie R. Martin, Hermann M. Schätzl, Suresh C. Tyagi, Shengzhou Wu, Michael T. Lotze, Albert R. La Spada, Channing J. Der, Gabriela Roca, Lucile Espert, Elisabeth Corcelle-Termeau, Zhenyu Yue, Sabine Hilfiker, Evripidis Gavathiotis, Truong Lam, Tobias M. Rasse, Kumaravel Somasundaram, Chih-Wen Shu, Tamotsu Yoshimori, Daniel T. Starczynowski, Oliver Florey, Vladimir Kirkin, Dan T. Vogl, Peter Vandenabeele, Allan Tsung, Renwick C. J. Dobson, Serge Mostowy, Nelly Godefroy, Maria Teresa Viscomi, Young Ho Koh, Caroline Mauvezin, Keiji Tanaka, Juan Fueyo, Lih-Shen Chin, Jingjing Cai, Laura D. Osellame, Maurizio Battino, Małgorzata Gajewska, Maria I. Vaccaro, Darius J.R. Lane, Yuji Ogura, Ian G. Mills, Gil Leibowitz, Joan Villarroya, Yu-Chen Hu, Maria Teresa Batista, Vojo Deretic, Manoj B. Menon, Zhenyi Ma, Dawit A. P. Gonçalves, Iban Seiliez, Enzo Emanuele, Ho Shin Gwak, Arnim Pause, Francesca Palladino, Cristiano Simone, Angelica M. Merlot, Peng Wang, Liang Ge, Kenneth Maiese, Ken Cadwell, Sally S. Atherton, Deepak Shukla, Thomas Neill, Jean-François Beaulieu, Barry Jutten, Cristina P.R. Xavier, James Murray, Tatsuya Saitoh, Roberto Chiarelli, Benedetto Grimaldi, Antonio Giordano, Yanjun Kou, Cathy Tournier, Romana T. Netea-Maier, Rui Li, Jason L. Eriksen, Colin D. Weekes, Esther Barreiro, Denis Mottet, Derek P. Narendra, Karl Swärd, Stephanie E. Wohlgemuth, Gary A. Silverman, Yukitoshi Nagahara, Mark J. Walker, Roland Malli, Diane M. Ward, Ling Hua Meng, John D. MacMicking, Cinzia Fabrizi, Marco Tucci, Tomasz M. Stepkowski, Wannian Yang, Yi Zhen Deng, Daret K. St. Clair, Darren J. Moore, Michael Lee, Katia Aquilano, Norbert Frey, Tibor Kovács, Ru Jeng Teng, Federico Pietrocola, Alfredo Criollo, Nadia Jaber, Walter T. Klimecki, Xiaohong Zhuang, Beata Sikorska, Inmaculada Tasset-Cuevas, Iwona A. Ciechomska, Robert C. Dickson, Haruo Kanno, Hua She, Xiaolei Xu, Maria Laura Avantaggiati, Isei Tanida, Jun Li, Diego Pérez-Rodríguez, Agnieszka Bagniewska-Zadworna, Viktor I. Korolchuk, Thirumala-Devi Kanneganti, Simone Nardin Weis, Thorsten Nürnberger, Guanghui Wang, Luigi Puglielli, Valina L. Dawson, Santosh Chauhan, Carole Kretz-Remy, Po-Yuan Ke, Haijun Bao, Patrícia Sampaio Tavares Veras, Sharad Kumar, Guo-Qiang Chen, Congfeng Xu, Annie M. Joubert, Diego L. Medina, Andrea Hamann, Christian Münz, Hongchuan Jin, Zhen Chen, Cristina López-Vicario, Seung Il Choi, Ivanka Markovic, Ronit Pinkas-Kramarski, Lei Jin, Yonghyun Kim, Michael J. Clague, James D. Johnson, Areti Pantazopoulou, Mohamed Al-Rubeai, Si Chen, Anne Spang, Matteo Bordi, Xiaowei Wang, Stefanie Pöggeler, Terrence M. Donohue-Jr, Aldrin V. Gomes, Jawahar L. Mehta, Yuuki Fujiwara, Mihai G. Netea, Ezra E.W. Cohen, Yunfei Huang, Do Hyung Kim, Guido Lenz, Qian Cai, Chenran Wang, Anna Katharina Simon, Barbara Del Bello, Robert Layfield, Taehoon Chun, Margit Burmeister, Wei Liu, Peter D. Adams, C. K.James Shen, Iva Slaninová, Kathleen W. Scotto, Erinna F. Lee, Mireille Verdier, Fernando J. Peña, Nicola Brunetti-Pierri, Eun-Kyoung Choi, Aleksandra Isakovic, Ju-Hyun Lee, Swapan K. Ray, Ming Chang Hu, Stephen Baghdiguian, Davide Cervia, Brent R. Stockwell, Maurizio Sorice, Andreas Till, Victor M. Darley-Usmar, Horng-Dar Wang, Ken H. Young, Yibin Feng, Néstor L. Uzcátegui, Andreja Erman, Manuela Antonioli, Alicia Torriglia, Michael D. Kim, Kazuyuki Kuchitsu, Fabio Di Domenico, Claudia Giampietri, Fuyong Song, Kevin E. Behrns, Craig Stevens, A. Sue Menko, Joana Liberal, Antonio Di Pietro, Xuejun Jiang, Joseph D. Mancias, Maria Tiziana Corasaniti, Frédéric Gros, Fuxin Wang, Jeremy Thorner, Areechun Sotthibundhu, Gijs R. van den Brink, Andrei S. Chagin, Rossella Menghini, Francesca Bernassola, Chi Li, Sung Gil Chi, Enrico Milan, Jean M. Mulcahy Levy, A. Murat Kaynar, Maria João Sousa, Olga Corti, Simone Cenci, Ting-Fang Wang, Carlos Hernández, Sucheta Telang, Zun-Ji Ke, Atsuo Amano, Lihuan Du, Meera Nanjundan, Lin Zhang, Matthias Gaestel, Bertrand Kaeffer, Andrey S. Tsvetkov, Silvia Carloni, Kazuhisa Hasui, Rosa Puertollano, Vladimir Bumbasirevic, Yongchao Zhao, Carolyn B. Coyne, Allan Caplan, Per Ottar Seglen, Kotb Abdelmohsen, Andreas Buch Møller, Jenny P.-Y. Ting, Raquel Muñoz-Moreno, Markus A. Rüegg, Monica Hagedorn, Hao Zhang, Tomotake Kanki, Edoardo M. Airoldi, Melanie Schwarten, Alfred J. Meijer, Anne Bertolotti, Matteo Bergami, Joëlle Wiels, Claudia Cerella, Eric Asselin, Z. H. An, Spencer B. Gibson, Chunlai Wu, Kai Kaarniranta, Paloma B. Liton, Feng Jun Li, Roberta Nardacci, Ernst J. Wolvetang, Robert C. Bast, Mark S. Cragg, Quentin Liu, Massimo Federici, Hyun Kyu Song, Hua Bai, Xiaotao Li, Nils J. Færgeman, Jason Chesney, Shrawan Kumar Singh, Marcello D'Amelio, Mark Prescott, Georg Auburger, Shazib Pervaiz, Allen Taylor, Diane C. Bassham, Lei Wan, Michinaga Ogawa, Emilia Maellaro, Cynthia Y. He, Chris Jones, Paolo Grumati, Jun-Lin Guan, Hiroyasu Nakano, Eric A. Schon, Roswitha Krick, Yoshihiro Shidoji, Jaime L. Schneider, Dusica Maysinger, Thomas Thum, Paul G. Thomes, Edo Vellenga, Liang Liu, Giuseppe Filomeni, Niramol Savaraj, Rudolf A. Kley, Wei Jung Chen, Bradley L. Baumgarner, Victor H. Villar, Steven Finkbeiner, Kapil Sirohi, Francesco Cecconi, Steven S. Witkin, Steve Jean, André du Toit, Rossella Russo, Irina Petrache, Randy Schekman, Keisuke Hino, Wei Chen, Basil J. Petrof, Daniel E. Frigo, Gyun Min Lee, Paul N. Span, Megumi Inomata, Ivica Arsov, Zhi-Xiang Xu, Saeid Ghavami, Tania C. Felizardo, Konstanze F. Winklhofer, Weidong Han, Jianhua Zhang, Eva Maria Mandelkow, Lydia Alvarez-Erviti, Wanderley de Souza, Pawel P. Liberski, Yang Sun, Cornelia M. Weyand, William D. Hill, Eric J. Brown, Christopher M. Adams, Felix Randow, Jose Luis Rosa, Ivan R. Nabi, Patricia V. Aguilar, Laure Aurelian, Jae-sung Bae, Gábor Juhász, Hing Y. Leung, Karla Kirkegaard, Peter J. O'Dwyer, Daniele Bergamaschi, Thomas Farkas, Tsunenori Saito, Laura Knuppertz, Leyuan Liu, Dongxu Fu, Liesu Meng, Alon Kahana, Viktor Billes, Shohreh Issazadeh-Navikas, Ljubica Harhaji-Trajkovic, Xiangguo Liu, Takahiro Yamada, Ciro Isidoro, Huiping Zhou, William A. Dunn, Takeshi Into, Giampietro Viola, Eumorphia G. Konstantakou, G. William Wong, Peter W. Szlosarek, Jeffrey S. Isenberg, Mikkel H. Vendelbo, Zuzana Papackova, Carlos B. Gonzalez, Hong Zhang, Alkesh Jani, Heidi Kiil Blomhoff, Wen-Li Chen, Simon Sedej, François Bertrand Favier, Marina K. Holz, Mitsunori Fukuda, Gudmundur Vignir Helgason, Fu-Cheng Lin, Inés Díaz-Laviada, Stefaan J. Soenen, Chao Yung Wang, Chee Yin Chai, Pierre-André Bédard, Xiaoxiang Zheng, Peter V. Bozhkov, Han-Ming Shen, Hazel M. Davey, Pedro A. Lazo, Haoxing Xu, Fengtian He, Jean Max Pasquet, Benoit Pasquier, William T. Jackson, Stéphane Duvezin-Caubet, Bertrand Mollereau, Tomohiro Kabuta, Maria Rosa Ciriolo, Peter Hasselblatt, Nihar Ranjan Jana, Jane L. Armstrong, Elisa Giovannetti, Fang Lin Sun, Zhenyu Yao, Shuji Kishi, Pei-Hui Lin, Yingmei Zhang, Limor Avrahami, Kenichi Shibuya, Guillaume Dalmasso, Radovan Vasko, Sharon Prince, Valerie B. O'Donnell, Gordon B. Mills, Hiroshi Aoki, Maryam Mehrpour, Muniswamy Madesh, Guillermo Díaz-Araya, Susan L. Cotman, Marius K. Lemberg, Tilman Grune, Jing Lan Liu, Richard C. Wang, Sandro Goruppi, Hongmin Wang, Robert A. Heinzen, Xiangmei Chen, Nihal Altan-Bonnet, Sung Sik Lee, Hai Jie Wang, Catherine Dargemont, Jie Du, Sofie Claerhout, Edmond Chan, Yi Sun, Xiangbo Wan, Paul Lingor, Shilpa Buch, Gerald M. McInerney, Zhenlong Wu, Guo Chang Zhang, Iain A. McNeish, Suresh Awale, Mark P. Mattson, Srinivasa Subramaniam, Wuhan Xiao, Katsuhiko Mikoshiba, Giancarlo Parenti, Bruno Miguel Neves, Benjamin Dehay, Fatima Teixeira-Clerc, Patricia Huebbe, Calvin K. Yip, Ryan J. Schulze, Pallabi Sarkar, Vladimir I. Titorenko, Johanna Laukkarinen, Martin E. Gleave, Veronika Stoka, Pascal Genschik, Karen Brown, Zhaoliang Su, Walter Malorni, Arlette Darfeuille-Michaud, Vincent C. O. Njar, Jeffrey E. Pessin, Thomas Wileman, Alexander J. Whitworth, Stefano Santaguida, Gustavo A. Nader, Gláucia Maria Machado-Santelli, Marie-Josée Hébert, Skye C. McIver, Scott A. Soleimanpour, Jia-Hong Lu, Fei Liu, Yu Wang, Elisa Motori, Chad A. Dickey, Andrej Udelnow, Ahmed Hamaï, Junying Yuan, Jan Paul Medema, Michelangelo Campanella, Abhishek D. Garg, Pallavi Chandra, Marco Mongillo, Bonnie Bartel, Thomas Weide, Yong Joon Chwae, Nancy Y. Ip, Yoshiaki Kamada, Hikmet Budak, Jian Xiao, Mario D. Cordero, Wei Li, Muzamil Majid Khan, He Jin Lee, Meng-Chao Yao, Zu-Hang Sheng, Perrine Castets, Dongsheng Cai, Morten Petersen, Javier Díaz-Nido, Yong Lin, Kaio Kitazato, Yotaro Izumi, Beatrice Y.J.T. Yue, Des R. Richardson, Chunsun Dai, Michael Hensel, Ronit Sagi-Eisenberg, Chan Ding, Christian Sell, Idil Orhon, Wilhelm Krek, Qutayba Hamid, Salem Chouaib, Rajkumar Banerjee, Hsing Yu Tuan, Eyleen J. O’Rourke, Fathia Mami-Chouaib, Ryo Ushioda, Hidekazu Suzuki, Jie Fan, Anders H. Lund, Urban Emmenegger, Brigit E. Riley, Andrew Thorburn, Kailash Gulshan, Karol Dokladny, José M. Cuezva, Daniel T. Ruan, Salik Hussain, Mohamed Rahmani, Maria Teresa Bassi, Miquel Vila, Pavel Strnad, Terry H. Landowski, Christiaan Leeuwenburgh, Hagit Eldar-Finkelman, Francesco Fornai, Vincent Kam Wai Wong, Hengyi Xiao, Massimo Nabissi, Luciano Merlini, Chris Williams, Jatin M. Vyas, Motoko Sasaki, Chwen Ming Shih, Saveria Aquila, Marina Garcia-Macía, Po Wu Gean, Yasuo Kitajima, Gian Luigi Russo, Tania Zaglia, Arnaud Moris, Alessandra Stacchiotti, Elaine Gutierrez, Iain D. C. Fraser, Paolo Salomoni, Ramón Corbalán, Dave Bridges, Juan P. Liuzzi, Rosanna Parlato, Sandrine Silvente-Poirot, Carl G. Maki, Patty J. Lee, Paulo Pereira, Vitaliy O. Kaminskyy, Rajaraman Eri, Bertha Brodin, Tobias Eisenberg, Rong Yu Liu, Yide Mei, Pearl P.Y. Lie, Bradford G. Hill, Yoshio Fujitani, Angelika A. Noegel, Nadarajah Vigneswaran, Muriel Mari, Steven Grant, Davide Romanelli, Lee Ann MacMillan-Crow, Anna-Lena Ström, David Sulzer, Aditya Murthy, Lisa B. Frankel, Yong Ma, Ok-Nam Bae, Pablo Wappner, Chun Hei Antonio Cheung, Young Hyun Yoo, Andreas Linkermann, Kirill V. Rosen, Orsolya Kapuy, Simone Di Paola, Thomas J. Evans, Rosa A. González-Polo, Jin H. Son, Kinya Otsu, Tracey R. O’Donovan, Nicolas Pallet, Stefano Toldo, Wafik S. El-Deiry, Allen Kaasik, Jin Tai Yu, Susu M. Zughaier, Gordon W. Laurie, Barbara Guerra, Taeg Kyu Kwon, Priyamvada Dua, Stephen A. Spector, Yingyu Chen, Ayesha N. Shajahan-Haq, Wei Pan, Matthew Campbell, Leo A. B. Joosten, J. Paul Taylor, Julian J. Lum, Matthew J. Justice, Clarissa von Haefen, William K.K. Wu, Gerald Rimbach, Peter Polčic, Jens Schmidt, Saverio Bettuzzi, Xian De Liu, Satoru Kobayashi, Yan Zhang, Ling Tian, Péter Nagy, Mercedes Pozuelo-Rubio, Cheng Jin, Marek Los, Hiroyuki Ishida, Yuji Moriyasu, Maria Teresa Cruz, Jingjing Liu, Anil K. Sood, Roberto Mateo, Antonio Facchiano, J. Mark Cooper, Xiaofeng Yao, Pei Ming Yang, Eli Arama, Marc Diederich, Luc J. W. van der Laan, Robin Ketteler, James Harris, Eui Ju Choi, Grant R. Campbell, Julie D. Atkin, Janos Kriston-Vizi, Sharon L. McKenna, Mila Ljujic, Hirotaka Watada, Harry Ischiropoulos, Shile Huang, Udo Hasler, Ke Li, Josefina Casas, Ken-ichi Isobe, Min Li, Muriel Priault, Vincenzo De Tata, Monique Gannagé, Sakineh Kazemi Noureini, Isao Ishii, Sasanka Ramanadham, Valérie Pierrefite-Carle, Chengyu Liang, Louise Deldicque, Gabriella Cavallini, Afshin Samali, Angelika Amon, Kah-Leong Lim, Lavinia Cantoni, Demetrios G. Vavvas, James E. Haber, Alireza R. Rezaie, Regina Celia Bressan Queiroz de Figueiredo, Cynthia D. Cooper, Masaaki Komatsu, Silvia Alvarez, Gemma Triola, Dong-Yun Ouyang, Razaul Karim, Kostyantyn V. Dmytruk, Bassam Janji, Peter Bütikofer, Indira U. Mysorekar, Hana Popelka, E. Marion Schneider, Carlos Guillén, Gaël Roué, Seung-Hoon Baek, Patrick Auberger, Jun Araya, Sandra M. Cardoso, Gu He, Eduardo C. Filippi-Chiela, Patrick A. Lewis, Wei-Pang Huang, Eric Reits, Cécile Vindis, Trond Lamark, Mehrdad Alirezaei, Takao Setoguchi, Alberto Bartolomé, Chih Peng Chang, Andriy A. Sibirny, Mauro Piacentini, Jing Wang, Kuninori Suzuki, Ludo Van Den Bosch, Kevin N. Dalby, Keiran S.M. Smalley, David K. Ann, Luis F. Moita, Anthony Sanchez, Chin Hsu, Guillermo M. Albaiceta, Vassilis Stratoulias, Attila L. Kovács, Charleen T. Chu, Tewin Tencomnao, Audrey H. Poon, Steve Lancel, José C. Fernández-Checa, Hannah Rabinowich, Heinz D. Osiewacz, Sami Dridi, Kate E. Keller, Thorsten Hoppe, Crispin R. Dass, Jekaterina Erenpreisa, Akira Matsuura, Donna D. Zhang, Ying Zhao, Luisa Coletto, Roy Parker, Georg M. N. Behrens, Alessia Di Nardo, Mian Wu, Alberto Jiménez, Magdalena Rost-Roszkowska, Christopher J. H. Elliott, Pamela J. Yao, Damián Gatica, Rafael Linden, Helena L. A. Vieira, Anand K. Ganesan, Wim Martinet, Frank Madeo, Juliann G. Kiang, Helmut Kramer, Lorrie A. Kirshenbaum, Salvador Ventura, Clemens Steegborn, Zahra Zakeri, Marco Antonio Meraz-Ríos, Masaki Ohmuraya, Michael A. Riehle, Congcong He, Federica Sotgia, Shi-Mei Zhuang, Paul Dent, Jürgen Bosch, Xuejun Wang, Kuan-Chih Chow, Carlos Gorbea, Lisa Gerner, Yuzuru Imai, Jan Gunst, Duncan R. Smith, María Esther Pérez-Pérez, N. Tony Eissa, Michel Roberge, Carmen García-Ruiz, Irfan J. Lodhi, Hongjiao Ouyang, Mustapha Kandouz, Alessio Papini, Jun Sun, Takanobu Otomo, David H. Perlmutter, Jae-Sung Kim, Feng Gao, Åsa B. Gustafsson, Paul M. Salvaterra, Michael Klinkenberg, Or Kakhlon, Abhinav Diwan, Takahiro Shintani, Paola Matarrese, Marc D. Meneghini, Jinsheng Zeng, Xu-jie Zhou, Linda S. Yasui, Rui Sheng, Shiqian Huang, Elizabeth Delorme-Axford, Amélie Bernard, Kevin M. Ryan, Cecília M. P. Rodrigues, Jonathan M. Backer, Harald Stenmark, Hiroaki Adachi, Koichi Sakakura, Fatima Mechta-Grigoriou, Zhi Nong Wang, Ramesh Natarajan, Tian Xia, Marco Folini, Robert A. Screaton, Jane J. Yu, Xian Wang, Gerhard H. Braus, Min Wu, John A. Hanover, Anuj Kumar, Charbel Moussa, Shailendra Anoopkumar-Dukie, Edward A. Fon, Ted Powers, Thomas H. Kawula, Zhe Liu, Jennifer Martinez, Orian S. Shirihai, Mara Cirone, Fen Wang, Machiko Sakoh-Nakatogawa, Yong Xia, Durga Nand Tripathi, James T. Handa, Nadia Zaffaroni, Esther Wong, Carlos López-Otín, Michael E. Cheetham, Harm H. Kampinga, Leopold Eckhart, Paul de Figueiredo, Xueqin Liu, Michael S. Goligorsky, Valentina Sica, Marco Sandri, Wen Qiang Chen, Szabolcs Takáts, Lilach O. Lerman, Akio Kihara, Constantinos Koumenis, Sergio Comincini, Antoinette Lemoine, Marc Bitoun, Zhuo-Wei Hu, Yu Xiong Su, Jeremy C. Mottram, Miguel A. Sanjuan, Richard D. Vierstra, Angelo De Milito, Marjolein van Egmond, Xi-Long Zheng, Kun-Liang Guan, Katrin Juenemann, Ohkmae K. Park, Eisuke Itakura, Bo Yan, Tim Lahm, Yongshun Chen, Kenneth L. van Golen, Federica Rizzi, Guochang Hu, Volker Doetsch, Chengtao Her, Conrad C. Weihl, Jing Hsiung James Ou, Chiou Feng Lin, Dun-Sheng Yang, Bozena Gabryel, Xiao Feng Zhu, Jackie de Belleroche, Charles L. Edelstein, Julie Gavard, Miklós Sass, Maria Chiara Maiuri, Zhendong Zhao, Pu Duann, Julián Pardo, Atsuhiro Ichihara, Lester M. Davids, Swamynathan Ganesan, Shengyun Fang, Hernando Gomez, Yun Chau Long, Mark J. Czaja, Arnaud Echard, Pilar Gonzalez-Cabo, Chuanyong Guo, Katherine L. Cook, Isabel Varela-Nieto, Li Yu, Yi Ran Huang, Binfeng Lu, Athanassios D. Velentzas, Koji Yamanaka, Giuseppe Russo, Ester M. Hammond, Kelsey B. Law, Sheng Li, Samisubbu R. Naidu, Michael E. Boulton, Anna-Mart Engelbrecht, Ba-Bie Teng, Zixu Mao, Vania M.M. Braga, Núria S. Coll, Eliana M. Coccia, Akihisa Abe, V. Ashutosh Rao, Nava Segev, Regina Menezes, Zufeng Ding, Hyman M. Schipper, Álvaro F. Fernández, Peter K. Kim, Lucia Micale, Biplab Dasgupta, Nazzy Pakpour, Janna L. Morrison, Yue Qin Chen, Rolf J. Craven, Zvulun Elazar, Anders Aune Tveita, Lian Li, Hsueh Fen Juan, Ulrich Koenig, Qiang Shi, Harald W. Platta, Michele S. Swanson, Olga V. Voitsekhovskaja, Bruce H. Reed, Malene Hansen, Paola Lenzi, Sandra Cottet, Yacine Graba, Christian Frezza, Bernd Schröder, Helene Knævelsrud, Li Chung Hsu, Hyunjung Jade Lim, Michael T. Greenwood, Parco M. Siu, Kyu Lim, Dolores Pérez-Sala, Patrice Codogno, Yi Yang, Frank Lezoualc'h, Ida Perrotta, Elaine A. Dunlop, Jörg H W Distler, Ken Ichi Yoshida, Dominic P. Del Re, Luigina Romani, Hye Young Kim, Eric Jonasch, Rajesh Agarwal, Wei Song, Ai Yamamoto, Zully Pedrozo, Steffan T. Nawrocki, María Salazar-Roa, Jorrit M. Enserink, Dong Wang, Flaviano Giorgini, Takayuki Ohshima, Boris Turk, Anastasia S. Mihailidou, Rosa Salvioli, Anne Simonsen, Caroline Biagosch, Glauber Costa Brito, Junko Oshima, Gail V.W. Johnson, Emmanuel Taillebourg, Sovan Sarkar, Shane Deegan, Eldad Zacksenhaus, Laura Avagliano, Byung-Hoon Lee, Weiliang Xia, Paolo Paganetti, Timothy J. Lyons, Christine M. Stellrecht, Jane E.B. Reusch, Raquel T. Lima, Feng Xu, James M. Phang, Hongwei Xu, Claudio Luparello, Mohammad Ishaq, Maureen E. Murphy, Isabelle Coppens, Luc Dupuis, Elio Ziparo, Patrick J. Bednarski, Svetlana Saveljeva, Ashok Kumar, Hongxin Zhu, Tobias B. Huber, Günther Weindl, Claudine Kraft, Dhiraj Kumar, Sara Marinelli, Karin von Schwarzenberg, Lijun Jia, Tiziana Crepaldi, Ke Liu, Eleonora García Véscovi, Qing Lu, Cláudia N. Santos, Bertrand H. Rihn, Jun Yu, Fen-Biao Gao, Flavio Flamigni, Jason E. Gestwicki, Dong-Hun Bae, Gustavo C. MacIntosh, David A. Leib, Giorgio Santoni, Chin Yuan Hsu, Abdelhaq Rami, Joseph Satriano, Matthew J. LaVoie, Paloma Martín-Sanz, Daniela De Zio, Sharon M. Gorski, Yu Tian Wang, Shuyan Lu, Clara L. Oeste, Andrew R. Tee, Koji Itahana, Xuesong Yang, Shuiping Tu, Malathi Krishnamurthy, Anne M. Strohecker, Gui Xian Xia, Helena Orozco, Sujit K. Bhutia, Hongbo Hu, Rupert Beale, Ying-Ray Lee, Kai Mao, Pierre-Emmanuel Rautou, Jean Francois Groulx, James A. Mastrianni, Victoria El-Khoury, Koji Okamoto, Mark J. Taylor, Arianna L. Kim, José M. Izquierdo, Dalibor Mijaljica, Björn Stork, Thomas Schwarz, Savita Bhalla, Menno van Lookeren Campagne, Long Zhang, Elizabeth S. Yeh, Li Zhang, Tae Cheon Kang, Frederic Luciano, Shusaku Shibutani, Luciana Dini, Valentina Cianfanelli, Sara Calatayud, Yong-Sun Kim, Maurizio Molinari, Graham H. Coombs, Takeshi Noda, Angelo Poletti, Silvia Palumbo, Dhan V. Kalvakolanu, Valérie Vouret-Craviari, Volodymyr Y. Nazarko, Salvatore Florio, Noboru Mizushima, Arthur Kaser, Shigeki Miyamoto, Patric J. Jansson, Thomas I-Sheng Hwang, Daniel J. Jackson, Adrian L. Harris, Srikanta Dash, Yeong Min Yoo, David Colecchia, Ute C. Meier, Yi Ma, Tadashi Suzuki, Anand Krishnan V. Iyer, Flavia Radogna, Paul S. Brookes, Deepak Kumar, Gabriella D'Orazi, Barry Yedvobnick, David R. Soto-Pantoja, Christian Waeber, Craig McCormick, Dong Hu, Sarron Randall-Demllo, Gustavo J.S. Pereira, Emil Rudolf, Scott L. Friedman, Paolo Bonaldo, Oliana Carnevali, Guido R.Y. De Meyer, Alice Carrier, Yipeng Wang, Serena Montagnaro, Nadeem O. Kaakoush, José de la Fuente, Devrim Gozuacik, Edward D. Plowey, Alastair M. Buchan, John C. Chatham, Daniel J. Klionsky, Cecilia Gotor, Isabelle Hamer, Katarzyna Mnich, Paola Rusmini, Chengshu Wang, Per Nilsson, Lorena Esteban-Martínez, Raúl V. Durán, Dieter Willbold, Hye Won Chung, Janet D. Sparks, John M. Lucocq, Blake B. Rasmussen, Takeshi Matsuzawa, Hagai Abeliovich, Wiep Scheper, Sung Joon Lee, Jennifer S. Carew, Serena Carra, Michael J. Morgan, Nikolai Slavov, Guy Berchem, Tiziana Cocco, Simone Engelender, Jianbo Yue, Yujie Chen, Mario Fabri, Maria F. Czyzyk-Krzeska, Hua Niu, Roger J. Davis, Peter J. Adhihetty, Kishore B.S. Pasumarthi, Jongsook Kim Kemper, Sharon A. Tooze, Antonio Zorzano, Jin Cheon Kim, Jian Xu, Andreas Meryk, Kristina Vuori, Jongdae Lee, Patrizia Agostinis, Diego Ruano, Wim Vandenberghe, Julia I-Ju Leu, Céline Gongora, Bernadette Carroll, Vinoth Kumar Megraj Khandelwal, Bo Lu, Marja Jäättelä, Lorenzo Galluzzi, Ioannis P. Trougakos, Tatsuya Maeda, Marie-Agnès Bringer, Mario Chiong, Hans-Uwe Simon, Lance A. Liotta, Ruth S. Slack, Ina Oehme, Umamaheswar Duvvuri, Shaun Martin, Augustine M.K. Choi, Michel Vidal, Ying Wang, Isis do Carmo Kettelhut, Mojgan Djavaheri-Mergny, Jörn Coers, Massimo Donadelli, Jesus Aldudo, Miyuki Sato, Jianxun Liu, Jörg Höhfeld, Luc Van Kaer, Andrei I. Ivanov, Dohun Pyeon, José M. Bravo-San-Pedro, Jianxin Peng, Xiaoyan Jiang, Dimitri Krainc, Yangqing Xu, Arnaud François, P. Robin Hiesinger, Sagar Lonial, William C. Cho, Caty Casas, Betty Yuen Kwan Law, Hongbing Zhang, Tor Erik Rusten, Erwin Knecht, Honglin Luo, Shi Xiao, Hiromi Sesaki, Enza Maria Valente, Verónica Pérez de la Cruz, Marta M. Lipinski, David A. Hood, Shi-Yong Sun, Luiz Carlos Carvalho Navegantes, Joynal Abedin, Shino Goto-Yamada, Gustavo Maegawa, Takehiko Matsushita, Vitor A. Lira, Clara I. Rodríguez, Ekihiro Seki, Qiang Li, Karin Öllinger, Ted M. Dawson, Ssang-Goo Cho, Wan-Wan Lin, Pramod Kumar Garg, Jeffrey Robbins, Peter R. Williamson, Michael Sacher, Carlo Follo, Bulent Ozpolat, Xiao Jia Wang, Na Man, Hua Cheng, Bing Yan, Tsung-Hsien Chuang, Paul B. Fisher, Rajat Singh, Edward A. Ratovitski, Katsuhiko Kitamoto, Jung Jin Hwang, Shinji Hadano, Che Hsin Lee, Shuo Wang, Einar M. Sigurdsson, Camille Martinand-Mari, Agnieszka Sirko, Katherine R. Parzych, Etienne Morel, Yasushi Kitaoka, Hassan Chaachouay, Patricia Chakur Brum, Dexin Kong, Jerome Tamburini, Kuppan Gokulan, Stefan Olsson, Bilon Khambu, Lea M.D. Delbridge, Daniel P. Orban, David A. Gewirtz, Zhonglin Xie, Joe Quadrilatero, Kunikazu Tanji, Simin Mohseni, Gábor Bánhegyi, Jin Ming Yang, Jinxian Xu, Carmen Veríssima Ferreira-Halder, Addanki P. Kumar, Deok Ryong Kim, Jianjie Ma, Sang Won Suh, Guido Kroemer, Klára Megyeri, Michael N. Sack, Heinrich Taegtmeyer, Gilles Pagès, Gabriella Marfe, Gregg L. Semenza, Karine G. Le Roch, Marisa Brini, Marina Bouché, Oliver Kepp, Vinay V. Eapen, J. David Beckham, Stephan T. Stern, Xudong Zhang, Marcello Pinti, Xiangnan Zhang, Jae Keun Lee, Ana Coto-Montes, Assaf Rudich, Laura D. Attardi, Debabrata Ghosh, Philip Rosenstiel, Sébastien Besteiro, Maria Rosa Sarrias, R. Andres Floto, Xiao Ming Yin, Nicholas W. Lukacs, Hermann Pavenstädt, Matias Simons, Hitoshi Nakatogawa, Sandro Alves, Krisztina Takács-Vellai, Masato Koike, Debasish Sinha, Shoji Notomi, Faraj Terro, Maria Carmela Roccheri, Santiago Ambrosio, K. Ulrich Bayer, Yumin Li, Terje Johansen, Christian Kuhn, Yee Shin Lin, David C. Rubinsztein, Ziwei Qu, Ronit Shiri-Sverdlov, Emmanuel T. Akporiaye, Galila Agam, Hui Ling Chiang, Seung-Jae Lee, Yu Xue, Francesca Giampieri, Markus Damme, Tassula Proikas-Cezanne, Tianwei Lin, Marc Kantorow, Guang-Chao Chen, Qiangrong Liang, Claudia Manzoni, Joan S. Steffan, Emilio Boada-Romero, Damien Freyssenet, Sepp D. Kohlwein, Maria D. Barrachina, Yulin Liao, Jiankang Chen, Erika Isono, Hugo Seca, Mei Wang, Taras Y. Nazarko, Yannick Bailly, Nadya V. Koshkina, Tapas K. Maiti, Bärbel Rohrer, Karin Nowikovsky, James H. Hurley, Gerald W. Dorn, Nils C. Gassen, Kazuhiro Nagata, Eiki Kominami, A. Ivana Scovassi, Ana Maria Cuervo, Adi Kimchi, Minghua Yang, Sylviane Muller, Life Sciences Institute and Department of Molecular, Cellular, and Developmental Biology and Biological Chemistry, University of Michigan [Ann Arbor], University of Michigan System-University of Michigan System, Defense in Plant-Pathogen Interactions [Nagoya, Japan], Nagoya University-Graduate School of Bioagricultural Sciences [Nagoya, Japan], Facultad de Quimica [Santiago], Pontificia Universidad Católica de Chile (UC), Institute of Cancer Sciences [Glasgow, UK] (CR-UK Beatson Institute), University of Glasgow, Cell Death Research & Therapy (CDRT) Lab, Université Catholique de Louvain, Harvard University Statistics Department, Harvard University [Cambridge], Centre épigénétique et destin cellulaire (EDC (UMR_7216)), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Conway Institute of Biomolecular and Biomedical Research and School of Chemical and Bioprocess Engineering, University College Dublin [Dublin] (UCD), Immunobiologie des Cellules dendritiques, Institut Pasteur [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM), Department of Biochemistry and Molecular Biology, Thomas Jefferson University-Sidney Kimmel Cancer Center, Jefferson (Philadelphia University + Thomas Jefferson University)-Jefferson (Philadelphia University + Thomas Jefferson University), Centro de Estudios Farmacológicos y Botánicos [Buenos Aires] (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas [Buenos Aires] (CONICET)-Facultad de Medicina [Buenos Aires], Universidad de Buenos Aires [Buenos Aires] (UBA)-Universidad de Buenos Aires [Buenos Aires] (UBA), Thérapie génique, Génomique et Epigénomique (U 1169), Université Paris-Saclay-Institut National de la Santé et de la Recherche Médicale (INSERM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Sud - Paris 11 (UP11), Department of Experimental Medicine and Public Health, University of Camerino, MRC Toxicology Unit, University of Leicester, Génomique Fonctionnelle des Tumeurs Solides (U1162), Université Paris 13 (UP13)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de médecine moléculaire de Rangueil (I2MR), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-IFR150-Institut National de la Santé et de la Recherche Médicale (INSERM), Departamento de Bioquímica y Biología Molecular y Celular, University of Zaragoza - Universidad de Zaragoza [Zaragoza], Department of Pharmaco-Biology, Università della Calabria [Arcavacata di Rende] (Unical), Department of Molecular Genetics [Rehovot, Israël], Weizmann Institute of Science, Fondation Universitaire Notre Dame de la Paix (FUNDP), Facultés Universitaires Notre-Dame de la Paix, Département Advanced Research And Techniques For Multidimensional Imaging Systems (ARTEMIS), Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP), USC Neuromuscular Center, Department of Neurology, University of Southern California (USC), Centre méditérannéen de médecine moléculaire (C3M), Université Nice Sophia Antipolis (... - 2019) (UNS), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM), Giannina Gaslini Institute, Department of Molecular Pharmacology, Albert Einstein College of Medicine, Department of Cancer Biology, University of Massachusetts Medical School [Worcester] (UMASS), University of Massachusetts System (UMASS)-University of Massachusetts System (UMASS), Institut des Sciences de l'Evolution de Montpellier (UMR ISEM), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-École pratique des hautes études (EPHE)-Université de Montpellier (UM)-Institut de recherche pour le développement [IRD] : UR226-Centre National de la Recherche Scientifique (CNRS), Inner Mongolia Agricultural University (IMAU), Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies (UMR 6174) (FEMTO-ST), Université de Franche-Comté (UFC)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Université de Technologie de Belfort-Montbeliard (UTBM), Indian Institute of Science [Bangalore] (IISc Bangalore), Politecnico di Milano [Milan] (POLIMI), Département des Sciences Biologiques [Montréal], Université du Québec à Montréal (UQAM), Laboratory of Molecular Biology, Scientific Institute E. Medea, Université Catholique de Louvain (UCL), Univ Ancona, Politecn Marche, University of Toronto, Munich Cluster for systems neurology [Munich] (SyNergy), Technische Universität München [München] (TUM)-Ludwig-Maximilians-Universität München (LMU), Institut de Recherche sur le Cancer et le Vieillissement (IRCAN), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Nice Sophia Antipolis (... - 2019) (UNS), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA), Department of Clinical and Molecular Medicine, Università degli Studi di Roma 'La Sapienza' [Rome]-Réseau International des Instituts Pasteur (RIIP)-Institut Pasteur, Fondation Cenci Bolognetti - Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Réseau International des Instituts Pasteur (RIIP), Physiopathologie du système nerveux central - Institut François Magendie, Université Bordeaux Segalen - Bordeaux 2-IFR8-Institut National de la Santé et de la Recherche Médicale (INSERM), Laboratoire d'Hémato-Cancérologie Expérimentale, CRP-Santé, Dpt of Neuroscience and Brain Technologies [Genova], NeuroEngineering & bio-arTificial Synergic SystemS Laboratory [Genova] (NetS3 Lab), Istituto Italiano di Tecnologia (IIT)-Istituto Italiano di Tecnologia (IIT), Center for Infection and Immunity Amsterdam (CINIMA), Laboratoire de biogenèse membranaire (LBM), Université Bordeaux Segalen - Bordeaux 2-Centre National de la Recherche Scientifique (CNRS), Centre de résonance magnétique biologique et médicale (CRMBM), Aix Marseille Université (AMU)-Assistance Publique - Hôpitaux de Marseille (APHM)-Centre National de la Recherche Scientifique (CNRS), Régulation de l'expression génétique (REG), Département de Biologie - ENS Paris, École normale supérieure - Paris (ENS Paris)-École normale supérieure - Paris (ENS Paris)-Centre National de la Recherche Scientifique (CNRS), Dynamique des interactions membranaires normales et pathologiques (DIMNP), Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Intégrative de la Cellule (I2BC), Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Department of Microbiology and Immunology, Stanford University School of Medicine [CA, USA], Institut de Myologie, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Assistance publique - Hôpitaux de Paris (AP-HP) (APHP)-Association française contre les myopathies (AFM-Téléthon)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Department of Dermatology, Brigham and Women's Hospital [Boston], San Raffaele Scientific Institute, Milan, Italy, Laboratory of Molecular Neuroembryology, University of Rome 'Tor Vergeta'-Clinical and Behavioral Neurology - Neuroscienze e riabilitazione, IRCCS Fondazione Santa Lucia [Roma]-Dulbecco Telethon Institute, Department of Pharmacology, Universidade de Santiago de Compostela, Glycobiologie et signalisation cellulaire, Université Paris-Sud - Paris 11 (UP11)-Institut National de la Santé et de la Recherche Médicale (INSERM), Complexo Hospitalario Universitario A Coruña, Mécanismes moléculaires de l'angiogénèse, Université Bordeaux Segalen - Bordeaux 2-Institut National de la Santé et de la Recherche Médicale (INSERM), University of Florida [Gainesville], Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer (JPArc - U1172 Inserm), Université Lille Nord de France (COMUE)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Université Lille 2 - Faculté de Médecine, Centro de Investigaciones Biológicas (CSIC), Consejo Superior de Investigaciones Científicas [Spain] (CSIC), Interactions hôte-greffon-tumeur, ingénierie cellulaire et génique - UFC (UMR INSERM 1098) (HOTE GREFFON), Université de Franche-Comté (UFC)-Etablissement français du sang [Bourgogne-France-Comté] (EFS [Bourgogne-France-Comté])-Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherche des Cordeliers (CRC (UMR_S_1138 / U1138)), École pratique des hautes études (EPHE)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU), Infection bactérienne, inflammation, et carcinogenèse digestive, Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-IFR50-Institut National de la Santé et de la Recherche Médicale (INSERM), Centre des Sciences du Goût et de l'Alimentation [Dijon] (CSGA), Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique (CNRS), Universita degli Studi di Padova, University of British Columbia (UBC), University of Edinburgh, Unité de Nutrition Humaine - Clermont Auvergne (UNH), Institut National de la Recherche Agronomique (INRA)-Université Clermont Auvergne (UCA), Australian Regenerative Medicine Institute, Monash University, Clayton, 3800, VIC, Australia, Faculty of Engineering and Natural Sciences, Sabanci University [Istanbul], Department of Biological Sciences [Stanford], Stanford University [Stanford], Université de Montréal (UdeM), Department of Human Genetics, Department of Psychiatry, University of Michigan System-University of Michigan System-Molecular and Behavioral Neuroscience Institute, Centre for Computational and Systems Biology (COSBI), Department of Computer Science [Tsukuba], Graduate School of Systems and Information Engineering [Tsukuba], University of Tsukuba-University of Tsukuba, Institut de biochimie et génétique cellulaires (IBGC), University of Western Ontario (UWO), Genetics, Dynamique Musculaire et Métabolisme (DMEM), Institut National de la Recherche Agronomique (INRA)-Université de Montpellier (UM), Department of Biochemistry and Biophysics, University of Naples Federico II, Lund University [Lund], Institute of Molecular Biosciences, Karl-Franzens University Graz, (IMB), Karl-Franzens-Universität Graz, Polytechnic University of Marche, Centre de Recherche en Cancérologie de Marseille (CRCM), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Paoli-Calmettes, Fédération nationale des Centres de lutte contre le Cancer (FNCLCC)-Fédération nationale des Centres de lutte contre le Cancer (FNCLCC)-Aix Marseille Université (AMU), Cell Biology, Physiology and Immunology, Research Unit on BioActive Molecules, Departamento de Química Orgánica Biológica, Instituto de Investigaciones Quimicas y Ambientales de Barcelona, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Physiopathologie et thérapie du muscle strié, Université Pierre et Marie Curie - Paris 6 (UPMC)-IFR14-Institut National de la Santé et de la Recherche Médicale (INSERM), The Buck Institute for Age Research, University of Pisa - Università di Pisa, Laboratorio di Genetica Molecolare, Istituto Gaslini, Universidad de Castilla-La Mancha (UCLM), Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, University of Crete [Heraklion] (UOC), Division of Molecular and Cellular Pathology [Birmingham], Department of Medical Research, Taichung Veterans General Hospital, Modélisation et Simulation Numérique en Mécanique et Génie des Procédés (MSNMGP), Université de la Méditerranée - Aix-Marseille 2-Université Paul Cézanne - Aix-Marseille 3-Université de Provence - Aix-Marseille 1-Centre National de la Recherche Scientifique (CNRS), University of Queensland [Brisbane], Dept of Mathematics, Purdue University, Purdue University [West Lafayette], Virologie et Pathologie Humaine (VirPath), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de chimie de coordination (LCC), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Zhejiang University, Équipe Micro et nanosystèmes HyperFréquences Fluidiques (LAAS-MH2F), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse 1 Capitole (UT1)-Université Toulouse - Jean Jaurès (UT2J)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse 1 Capitole (UT1)-Université Toulouse - Jean Jaurès (UT2J), King Abdullah University of Science and Technology (KAUST), Southern University of Science and Technology of China (SUSTech), OASE, National University of Tainan, Taiwan (OASE), National Taiwan University [Taiwan] (NTU), Weifang Bureau of Land Resources [Weifang], Department of cardiology [Guy's and St. Thomas ' hospitals] [London], Guy's and St Thomas' Hospital [London]-Guy's Hospital [London], University of Pennsylvania [Philadelphia], CRLCC Eugène Marquis (CRLCC), Emory University School of Medicine, Emory University [Atlanta, GA], Korea University, Cytokines et Immunologie des Tumeurs Humaines (U753), Université Paris-Sud - Paris 11 (UP11)-Institut Gustave Roussy (IGR)-Institut National de la Santé et de la Recherche Médicale (INSERM), Department of Pharmacology [Tartu, Estonie], Institute of Biomedicine and Translational Medicine [Tartu, Estonie], University of Tartu-University of Tartu, Max-Planck-Institut für Biophysikalische Chemie - Max Planck Institute for Biophysical Chemistry [Göttingen], Max-Planck-Gesellschaft, University of Pittsburgh (PITT), Pennsylvania Commonwealth System of Higher Education (PCSHE), University of Cincinnati (UC), Réponses immunes : régulation et développement, Université Paris Diderot - Paris 7 (UPD7)-Institut National de la Santé et de la Recherche Médicale (INSERM), Department of Experimental Medicine, Oxford University, University of Oxford [Oxford], Division of regenerative Medicine, San Raffaele Scientific Institute, The University of New Mexico [Albuquerque], Université Libre de Bruxelles [Bruxelles] (ULB), Macrophages et Développement de l'Immunité, Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS), Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health [Baltimore], Johns Hopkins University (JHU)-Johns Hopkins University (JHU), Institut du Cerveau et de la Moëlle Epinière = Brain and Spine Institute (ICM), Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [APHP]-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Dipartimento di Scienze Biomediche, Università degli Studi di Modena e Reggio Emilia (UNIMORE), Department of Experimental Medicine and Oncology, University of Turin, Institut de Génomique Fonctionnelle (IGF), Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Centre National de la Recherche Scientifique (CNRS), CNV, University of Valparaiso, Institut Gustave Roussy (IGR), Universidad Autonoma de Madrid (UAM), Cell Signalling & Proteomics Group [Londres, Royayme-Uni], Barts Cancer Institute [Londres, Royayme-Uni], Queen Mary University of London (QMUL)-Queen Mary University of London (QMUL), Department of General, Visceral and Vascular Surgery [Jena], Friedrich-Schiller-Universität Jena, Department of Biomedical Engineering, The University of Texas at Austin, University of Texas at Austin, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte - Clermont Auvergne (M2iSH), Institut National de la Recherche Agronomique (INRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Clermont Auvergne (UCA)-Centre de Recherche en Nutrition Humaine d'Auvergne (CRNH d'Auvergne), Fondazione Santa Lucia (IRCCS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Jacques Monod (IJM (UMR_7592)), Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Department of Biology, Johns Hopkins University (JHU), Neurogenetics Group, Instituto de Investigación en Recursos Cinegéticos (IREC), Laboratório de Ultraestrutura Celular Hertha Meyer (IBCCF), Universidade Federal do Rio de Janeiro [Rio de Janeiro] (UFRJ), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich), Molecular and Cellular Biology, Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), National University of Ireland [Galway] (NUI Galway), Institut des Maladies Neurodégénératives [Bordeaux] (IMN), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), Freiburg Institute for Advanced Studies-LifeNet, Albert-Ludwigs-Universität Freiburg, Groupe de Recherche en Immunopathologies et maladies infectueuses (GRI), Université de La Réunion (UR)-Centre hospitalier Félix-Guyon [Saint-Denis, La Réunion], Brunel University London [Uxbridge], Unité Propre de Recherche 2357, Institution de Biologie Moléculaire des Plantes, Radiothérapie moléculaire (UMR 1030), Department of Chemistry, University of Kentucky, Universidad de Córdoba [Cordoba], Institut Pasteur, Fondation Cenci Bolognetti - Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Università degli Studi di Roma 'La Sapienza' [Rome], Facultad de Ciencias Químicas y Farmacéuticas, Centro de Estudios Moleculares de la Célula, Biochemistry and Molecular Biology, Goethe-University Frankfurt am Main, Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Università del Salento, Institut Bergonié - Département de médecine, Université Bordeaux Segalen - Bordeaux 2-Centre régional de lutte contre le cancer [CRLCC], Institut National Polytechnique de Lorraine (INPL), Récepteurs nucléaires, maladies cardiovasculaires et diabète (EGID), Université de Lille, Droit et Santé-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Unité de Recherche sur les Maladies Cardiovasculaires, du Métabolisme et de la Nutrition = Institute of cardiometabolism and nutrition (ICAN), Assistance publique - Hôpitaux de Paris (AP-HP) (APHP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [APHP]-Sorbonne Université (SU), Institut de recherches sur la catalyse et l'environnement de Lyon (IRCELYON), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Laboratoire de signalisation moléculaire et neurodégénerescence, Université Louis Pasteur - Strasbourg I-IFR37-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Européen de Chimie et Biologie (IECB), Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM), Trafic membranaire et Division cellulaire, Landesbetrieb Hessisches Landeslabor, Hematology-Oncology Division, Perelman School of Medicine, University of Pennsylvania [Philadelphia]-University of Pennsylvania [Philadelphia], University of Pavia, Instituto de Investigaciones Biotecnológicas [San Martín] (IIB-INTECH), Universidad Nacional de San Martin (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas [Buenos Aires] (CONICET), University of Helsinki, School of Physics and Astronomy [Exeter], University of Exeter, Department of Biomedicinal Chemistry (CSIC), Institut de Química Avançada de Catalunya, Laboratory of Vascular Pathology (IDI-IRCCS), Istituto Dermopatico dell'Immacolata, Peking University [Beijing], MRC Centre for Developmental Neurobiology, University of Brescia, Immunobiologie fondamentale et clinique, Université de Lyon-Université de Lyon-IFR128-Institut National de la Santé et de la Recherche Médicale (INSERM), CIC régional épidémiologie clinique/essais cliniques - Ile de la Réunion (CIC-EC), University of Rome 'Tor Vergeta', Universidad de Oviedo [Oviedo], Laboratoire des signaux et systèmes (L2S), Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Dulbecco Telethon Institute/Department of Biology, Istituto Nazionale di Malattie Infettive 'Lazzaro Spallanzani' (INMI), Rockefeller University [New York], The Babraham Institute, Kansas State University, McGill University, Service d'Anatomie et Cytologie Pathologique [Rouen], CHU Rouen, Normandie Université (NU)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU), Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM ), Université de Lyon-Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]), Department of Medicine [New York], Icahn School of Medicine at Mount Sinai [New York] (MSSM), ATOS Origin, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences-Tohoku University [Sendai], Goethe-University, Goethe-Universität Frankfurt am Main, Institute of physiological chemistry, Hannover Medical School [Hannover] (MHH), Department of Physiology, Department of Plant and Environmental Sciences, Apoptose, cancer et immunité (U848), Laboratoire de Biologie du Développement (LBD), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Biologie Paris Seine (IBPS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Departments of Neurology and Psychiatry, Alzheimer's Disease Research Center, Institute of Experimental Immunology - IEI [Zürich, Switzerland], Université de Zurich [Switzerland], Digital Enterprise Research Institute (DERI-NUIG), Spanish National Research Council (CSIC), Cell Death Research and Therapy Unit [Leuven, Belgium] ( Department of Cellular and Molecular Medicine), Centre d'Immunologie de Marseille - Luminy (CIML), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), Signaling in Oncogenesis, Angiogenesis and Permeability - SOAP (CRCINA - Département ONCO - Equipe 15), Centre de recherche de Cancérologie et d'Immunologie / Nantes - Angers (CRCINA), Université d'Angers (UA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre hospitalier universitaire de Nantes (CHU Nantes)-Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE), Université de Nantes (UN)-Université de Nantes (UN)-Université d'Angers (UA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre hospitalier universitaire de Nantes (CHU Nantes)-Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE), Université de Nantes (UN)-Université de Nantes (UN), Department of Medicine [San Francisco], University of California [San Francisco] (UCSF), University of California-University of California, Fondazione Santa Lucia [IRCCS], Clinical and Behavioral Neurology [IRCCS Santa Lucia], Institut de biologie moléculaire des plantes (IBMP), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-IFR48, INSB-INSB-Centre National de la Recherche Scientifique (CNRS), Department of Anatomy, Histology, Forensic Medicine and Orthopedic, N.A., Division of Pharmacology and Chemotherapy, Department of Internal Medicine, Pathogénie Microbienne Moléculaire, University of Chile [Santiago], Université de Montpellier (UM), Faculdade de Ciências Farmacêuticas de Ribeirão Preto [São Paulo], Universidade de São Paulo (USP), Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Institut de recherche en cancérologie de Montpellier (IRCM - U896 Inserm - UM1), CRLCC Val d'Aurelle - Paul Lamarque-Université de Montpellier (UM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Montpellier 1 (UM1), Catalan Institute of Oncology, Department of Cell Biology, National Institute for Basic Biology [Okazaki], Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Universidad de Sevilla-Centro de Investigaciones Científicas Isla de la Cartuja, The Adams Super Center for Brain Studies, Tel Aviv University [Tel Aviv], Institut de Biologie du Développement de Marseille (IBDM), Aix Marseille Université (AMU)-Collège de France (CdF)-Centre National de la Recherche Scientifique (CNRS), Department of Pharmacology and biochemistry, Virginia Commonwealth University (VCU), Department of Immunology, St Jude Children's Research Hospital, Department of Biology and Biotechnologies 'Charles Darwin', Lettres, Idées, Savoir (LIS), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12), Institute of Biological Chemistry and Nutrition, University of Hohenheim, China Seismological Bureau, Massachusetts Institute of Technology (MIT), Rosenstiel Basic Medical Sciences Research Center [Waltham], Brandeis University, Institut Necker Enfants-Malades (INEM - UM 111 (UMR 8253 / U1151)), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA), Meakins-Christie Laboratories, Sanford Burnham Medical Research Institute, La Jolla, National Institute of Advanced Industrial Science and Technology (AIST), ORIENT ET MÉDITERRANÉE : Textes, Archéologie, Histoire (OM), Université Panthéon-Sorbonne (UP1)-École pratique des hautes études (EPHE)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), David Geffen School of Medicine [Los Angeles], University of California [Los Angeles] (UCLA), Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Biochemistry and Molecular Biology I, Department of Immunology and Infectious Diseases, Harvard School of Public Health, aDepartment of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences (SLU), Philipps University of Marburg, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Renal Division, University Medical Center Freiburg, Freiburg, Germany, Rural Health Academic Centre, University of Melbourne-Rural Clinical School, Department of Pathology, University of Veterinary and Animal Sciences, Dipartimento di Scienze della Vita [Modena, Italy], Stress Cellulaire, Université de la Méditerranée - Aix-Marseille 2-Institut National de la Santé et de la Recherche Médicale (INSERM), Department of Pathology, Anatomy & Cell Biology [Philadelphia, Pennsylvania, USA], Thomas Jefferson University, Department of Molecular Neuroscience, Departamento de Bioquimica Clinica, Facultad de Ciencias Quimicas, Centro de Investigación en Bioquímica Clínica e Inmunología (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina, Neuroinflammation Unit, Biotech Research and Innovation Centre-University of Copenhagen = Københavns Universitet (KU), Mathematics and Computing in Automatic Control and Optimization for the User (MIAOU), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Centre de Recherche des Cordeliers (CRC), Université Paris Diderot - Paris 7 (UPD7)-École pratique des hautes études (EPHE)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Danish Cancer Society, Institute of Cancer Biology, UCL-Institute of Child Health (ICH), Institute of Child Health-Great Ormond Street Hospital for Children [London] (GOSH), Division of Renal Diseases and Hypertension, University of Colorado [Boulder], Institut de biologie et chimie des protéines [Lyon] (IBCP), Joslin Diabetes Center, Universität Ulm - Ulm University [Ulm, Allemagne], Qingdao Institute of Marine Geology, China Geological Survey, Qingdao 266071, China, Université Paris Diderot - Paris 7 (UPD7), Institute of Software, Chinese Academy of Sciences [Beijing] (CAS), Metabolic Engineering Group, Departamento de Microbiologia y Genetica, Edificio Departamental, Campus Miguel de Unamuno, Universidad de Salamanca, University of Minnesota [Twin Cities], University of Minnesota System, Department of Cellular and Molecular Physiology, Yale University School of Medicine, The Arctic University of Norway, Department of Biological Sciences, The Open University [Milton Keynes] (OU), Summit Analytical, CALRG, Institute of Educational Technology, Institute for Neurologic Disabilities Research, Faculty of Health Sciences-University of Pretoria [South Africa], Department of Paediatric Neurology, Guy's and St Thomas' Hospital [London]-Evelina Children's Hospital, Physiologie des Adaptations Nutritionnelles [UMR_A1280] (PhAN), Institut National de la Recherche Agronomique (INRA)-Université de Nantes (UN), Dana-Farber Cancer Institute and the Department of Cell Biology, Harward Medical School, Translational Health Science and Technology Institute [Faridabad] (THSTI), Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands, School of Reliability and Systems Engineering [Beijing], Beihang University, Oxford Centre for Integrative Systems Biology, Center for Membrane and Cell Physiology [Charlottesville, VA, USA] (School of Medicine), University of Virginia [Charlottesville], Apoptose, cancer et immunité (Equipe labellisée Ligue contre le cancer - CRC - Inserm U1138), Institut Gustave Roussy (IGR)-Centre de Recherche des Cordeliers (CRC (UMR_S_1138 / U1138)), École pratique des hautes études (EPHE)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-École pratique des hautes études (EPHE)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU), St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Karlsruher Institut für Technologie (KIT), Faculty of Pharmaceutical Sciences, Hokkaido University, École normale supérieure - Paris (ENS Paris), School of Electrical Engineering [Seoul] (Korea University), Department of Mathematics and Statistics [Guelph], University of Guelph, Department of Molecular Genetics, Department of Genetics [Stanford, CA, États-Unis], Institute of Immunology, University Hospital Schleswig-Holstein, Arizona Respiratory Center, Okazaki Institute for Integrative Bioscience, ToxAlim (ToxAlim), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Vétérinaire de Toulouse (ENVT), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole d'Ingénieurs de Purpan (INPT - EI Purpan), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Recherche Agronomique (INRA), Newcastle University [Newcastle], JRC Institute for Transuranium Elements [Karlsruhe] (ITU ), European Commission - Joint Research Centre [Karlsruhe] (JRC), Department of Neuroscience, University of Texas Southwestern Medical Center [Dallas], Centre de génétique et de physiologie moléculaire et cellulaire (CGPhiMC), Laboratory of Functional Neurogenomics [Tuebingen, Germany], University of Tuebingen-Center of Neurology and Hertie-Institute for Clinical Brain Research [Tuebingen, Germany], Indian Institute of Technology Bombay (IIT Bombay), European Organization for Nuclear Research (CERN), Harvard Medical School [Boston] (HMS), Indian School of Mines, Department of Computer Science [UIUC] (UIUC), University of Illinois at Urbana-Champaign [Urbana], University of Illinois System-University of Illinois System, Centre for Cancer Biology, Hanson Institute, Adelaide, University of California [San Diego] (UC San Diego), University of California, Centre d’Infection et d’Immunité de Lille (CIIL) - U1019 - UMR 8204 (CIIL), Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Department of Biochemistry, University of Bristol, Organisation Nucléaire et Oncogenèse, Institut de génétique et biologie moléculaire et cellulaire (IGBMC), Université Louis Pasteur - Strasbourg I-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), FONDAP Center CEMC Estudios Moleculares de la Célula, Unité de Biologie Fonctionnelle et Adaptative (BFA (UMR_8251 / U1133)), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Centre d'infectiologie Necker-Pasteur [CHU Necker], CHU Necker - Enfants Malades [AP-HP], Chungnam National Univesity School of Medicine, Taejon, Korea, Chungnam National Univesity School of Medicine, Micro & Nanobiotechnologies, Institut des Sciences Analytiques (ISA), Centre National de la Recherche Scientifique (CNRS)-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École normale supérieure - Lyon (ENS Lyon), Centre de Recherche en Cancérologie de Lyon (CRCL), Université de Lyon-Université de Lyon-Centre Léon Bérard [Lyon]-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre de génétique moléculaire (CGM), Université Paris-Sud - Paris 11 (UP11)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Center for Applied Mathematics, Tsinghua University [Beijing], University of Connecticut School of Medicine, University of Connecticut (UCONN), Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes (LBMCE), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Microenvironnement et Physiopathologie de la Differenciation, Division of Nephrology and Hypertension, Mayo Clinic, Beatson Institute for Cancer Research, Beatson institute for cancer research, Howard Hughes Medical Institute, Howard Hugues Medical Institute, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM), Institute of Computing Technology [Beijing] (ICT), Chinese Academy of Sciences [Changchun Branch] (CAS), School of Electronics and Computer Science (ECS), University of Southampton, Third Hospital, Department of Anesthesiology, Cognitive Interaction Technology [Bielefeld] (CITEC), Universität Bielefeld = Bielefeld University, Procédés, Matériaux et Energie Solaire (PROMES), Université de Perpignan Via Domitia (UPVD)-Centre National de la Recherche Scientifique (CNRS), Faculty of Pharmacy- University of Coimbra, National Neuroscience Institute, Key Laboratory of Molecular Virology & Immunology (LMVI), Institut Pasteur de Shanghai, Académie des Sciences de Chine - Chinese Academy of Sciences (IPS-CAS), Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP), Coll Life Sci, Beijing Normal University, Delft University of Technology (TU Delft), Christian-Albrechts-Universität zu Kiel (CAU), Department of Molecular Pathology and Microbiology, Center for Applied Proteomics and Molecular Medicine-George Mason University [Fairfax], Sidney Kimmel Cancer Center, Jefferson (Philadelphia University + Thomas Jefferson University), Institut des Sciences Chimiques de Rennes (ISCR), Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Rennes-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES), Department of Chemistry, University of Pittsburgh, University of Pittsburg, Tianjin University of Science and Technology (TUST), Hunan University of Science and Technology [Xiangtan], Laboratoire de Génie Civil et Génie Mécanique (LGCGM), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), China Agricultural University (CAU), Acad Disaster Reduct and Emergency Management, Minist Civil Affairs, Minist Educ, Beijing, Peoples R China, affiliation inconnue, Département Technologie des Polymères et Composites & Ingénierie Mécanique (TPCIM), École des Mines de Douai (Mines Douai EMD), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Ministère de l'Economie, des Finances et de l'Industrie, MOE Key Laboratory of Bioinformatics, Centre for Plant Biology, School of Life Sciences, Laboratoire d'Informatique Gaspard-Monge (ligm), Université Paris-Est Marne-la-Vallée (UPEM)-École des Ponts ParisTech (ENPC)-ESIEE Paris-Fédération de Recherche Bézout-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Biochimie Moléculaire et Cellulaire (LBMC), Université de Bourgogne (UB), Center for International Blood and Marrow Transplant Research (CIBMTR), Emory University [Atlanta, GA]-Medical College of Wisconsin, Centre de biophysique moléculaire (CBM), Université d'Orléans (UO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Illman Cancer Center, Pennsylvania Commonwealth System of Higher Education (PCSHE)-Pennsylvania Commonwealth System of Higher Education (PCSHE), Ingénierie des Matériaux Polymères (IMP), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), Université Côte d'Azur (UCA), Department of Medical Microbiology and Immunology, University of California [Davis] (UC Davis), School of Health Sciences, University of Minho [Braga], Équipe Calcul Distribué et Asynchronisme (LAAS-CDA), University of California [Riverside] (UCR), Ohio State University [Columbus] (OSU), Laboratory of Systems Biology, Van Andel Institute [Grand Rapids], Division of Genetics and Cell Biology, National Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Oregon Health and Science University [Portland] (OHSU), Dendrite Differenciation Group [DZNE - Bonn], German Research Center for Neurodegenerative Diseases - Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Equipe 12, Génétique moléculaire, signalisation et cancer (GMSC), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre de Recherche en Cancérologie de Lyon (CRCL), Université de Lyon-Université de Lyon-Centre Léon Bérard [Lyon]-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre Léon Bérard [Lyon]-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), University Medical Center [Utrecht], Institut d'Investigacions Biomèdiques August Pi I Sunyer [Barcelona, Spain] (Hospital Clinic ), Department of Genetics, Trinity College Dublin, Fisiopatologia de los procesos inflamatorios, Vall d'Hebron Research Institute, Institució Catalana de Recerca i Estudis Avançats (ICREA), Department of Human Genetics, Nagasaki University, Transduction du signal et oncogénèse, Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Curie, Center for Experimental and Molecular Medicine, Academic Medical Center - Academisch Medisch Centrum [Amsterdam] (AMC), University of Amsterdam [Amsterdam] (UvA)-University of Amsterdam [Amsterdam] (UvA), Department of medical Biochemistry, University of Amsterdam [Amsterdam] (UvA), IDI-IRCCS Biochemistry Laboratory, Università degli Studi di Roma Tor Vergata [Roma], Program Against Cancer Therapeutic Resistance/Metabolism & Cancer Group [Catalonia, Spain] (ProCURE), Catalan Institute of Oncology-Girona (ICO-Girona), Instituto de Tecnologia Química e Biológica António Xavier (ITQB), Universidade Nova de Lisboa (NOVA), Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza Hospital, CNR, Consiglio Nazionale delle Ricerche (CNR), Biochimie et Physiologie Moléculaire des Plantes (BPMP), Université de Montpellier (UM)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS), Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, The Hospital for sick children [Toronto] (SickKids), Universidad de Sevilla, Immunité muqueuse et vaccination, Institut National de la Santé et de la Recherche Médicale (INSERM)-IFR50-Université Nice Sophia Antipolis (... - 2019) (UNS), DIMS, University of Trento [Trento], Laboratoire de Biologie Moléculaire de la Cellule (LBMC), Department of Cellular and Molecular Medicine [Madrid, Spain], Laboratory of Cell Death and Cancer Therapy [Madrid, Spain], Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC) -Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3HD, UK, Centre d'Immunologie et de Maladies Infectieuses (CIMI), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Dpt. of Cancer & Cell Biology, Interactions Bactéries-Cellules (UIBC), Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Pasteur [Paris]-Institut National de la Recherche Agronomique (INRA), Max planck Institute for Biology of Ageing [Cologne], Euromov (EuroMov), Wellcome Trust Centre for Molecular Parasitology [Glasgow, UK], University of Glasgow- Institute of Infection, Immunity and Inflammation [Glasgow, UK], Immunologie et chimie thérapeutiques (ICT), Cancéropôle du Grand Est-Centre National de la Recherche Scientifique (CNRS), UMR 1599, Centre National de la Recherche Scientifique (CNRS), EA 4100, Histoire culturelle et sociale de l'art (HiCSA), Université Panthéon-Sorbonne (UP1)-Université Panthéon-Sorbonne (UP1), Centre for Astrophysics and Supercomputing (Centre for Astrophysics and Supercomputing), Swinburne University of Technology [Melbourne], Department of Cellular and Physiological Sciences [Vancouver, BC, Canada] (Life Sciences Institute), University of British Columbia (UBC)-Life Sciences Institute [Vancouver, BC, Canada], School of Pharmacy, Department of Experimental Medicine, Dept. Neurosciences, Department of Internal Medicine, Radboud University Medical Center [Nijmegen], Institute of Medical Genetics and Applied Genomics, Radiation Physics, School of Life Science, Department of Basic Biology, The Graduate University for Advanced Studies, CIBER de Enfermedades Neurodegenerativas (CIBERNED), Doshisha University, National Cancer Research Center [Tokyo, Japan], University of Washington [Seattle], Department of Experimental Neurodegeneration [Göttingen, Germany], University Medical Center Göttingen (UMG), Cibles moléculaires et thérapeutiques de la maladie d'Alzheimer (CIMoTHeMA), Université de Poitiers, Laboratoire de Probabilités et Modèles Aléatoires (LPMA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), BioCeV-Institute of Microbiology, Médecine Personnalisée, Pharmacogénomique, Optimisation Thérapeutique (MEPPOT - U1147), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Istituto di chimica biologica, Università degli Studi di Verona, Département Image et Traitement Information (ITI), Institut Mines-Télécom [Paris] (IMT)-Université européenne de Bretagne - European University of Brittany (UEB)-Télécom Bretagne, Department of Cell Biology and Biophysics, Università degli Studi di Firenze [Firenze], Cell Immunity in Cancer, Inflammation and infection Group [Zaragoza, Spain] (Biomedical Research Center), Nanoscience Institute of Aragon - INA [Zaragoza, Spain]-Fundación Agencia Aragonesa para la Investigación y el Desarrollo - ARAID [Zaragoza, Spain]-University of Zaragoza - Universidad de Zaragoza [Zaragoza], Department of Pediatrics, Università degli studi di Napoli Federico II, Transfert de Genes a Visee Therapeutique Dans les Cellules Souches, Developpement Normal et Pathologique du Système Immunitaire, Signalisation et physiopathologie des cellules épithéliales, Facultad de Medicina, Universidad de Santiago de Chile [Santiago] (USACH), Departamento de Farmacobiología, Cinvestav-Sede Sur, Centre de recherche Croissance et signalisation (UMR_S 845), College of Life Sciences, Central China Normal University, Institute of Molecular Biotechnology, Austrian Academy of Sciences (OeAW), Laboratory of Cardiac Surgical Research, Monash University [Clayton], Universidade do Minho, Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Neurodegenerative Diseases Research Group (CIBERNED), Vall d'Hebron Research Institute-Center for Networked Biomedical Research on Neurodegenerative Diseases, Barcelona, Department of medicine, Syracuse, NY, USA, State University of New York (SUNY), National University of Singapore (NUS)-Yong Loo Lin School of Medicine-Graduate School for Integrative Sciences and Engineering, McGill University Health Center [Montreal] (MUHC), National Institute for Infectious Diseases, Transporteurs en Imagerie et Radiothérapie en Oncologie (TIRO - UMR E4320), Service Hospitalier Frédéric Joliot (SHFJ), Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-UMR E4320 (TIRO-MATOs), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Nice Sophia Antipolis (... - 2019) (UNS), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Nice Sophia Antipolis (... - 2019) (UNS), Institut Gustave Roussy (IGR)-Centre de Recherche des Cordeliers (CRC), Université Paris Diderot - Paris 7 (UPD7)-École pratique des hautes études (EPHE)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Diderot - Paris 7 (UPD7)-École pratique des hautes études (EPHE)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Department of Biomedical Sciences, Department of Genetics of Eukaryotic Microorganisms, Georg-August-University [Göttingen]-Institute of Microbiology and Genetics, Sterol metabolism and therapeutic innovations in oncology, Institut Claudius Regaud, CRLCC Institut Claudius Regaud-CRLCC Institut Claudius Regaud-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Department of Molecular, Cellular and Developmental Biology, Señalización Celular 4, Institute of integrative biology (Liverpool), University of Liverpool, Department of Human Biology, University of Cape Town, National Institute of Diabetes and Digestive and Kidney Diseases [Bethesda], Department of Molecular Biology, Eberhard Karls Universität Tübingen, Technical University of Munich (TUM), Biophysics and Bioinformatics Laboratory, Department of Cell Biology and Morphology, Université de Lausanne (UNIL), Shenyang Institute of Automation, the Chinese Academy of Sciences (SIA), Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Xi'an Jiaotong University (Xjtu), Dipartimento di Biologia, Mechanics laboratory , UniversityAmar Telidji, 3000 Laghouat, Algéria., Mechanics laboratory , University Amar Telidji, sans affiliation, Service d'hépatologie [Hôpital Beaujon], Assistance publique - Hôpitaux de Paris (AP-HP) (APHP), University of Waterloo, Waterloo, ON, Canada, Institute of Cell Biology and Immunology, University of Stuttgart, Chaperones Research Group, Institute of Biosciences and Technology [Houston, TX, États-Unis] (IBT), Texas A&M Health Science Center [Houston, TX, États-Unis] (TAMHSC), Texas A&M University Health Science Center-Texas A&M University Health Science Center, Aquatic and Crop Resource Development, National Research Council of Canada (NRC), Cibles thérapeutiques, formulation et expertise pré-clinique du médicament (CITHEFOR), Université de Lorraine (UL), Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche [Ancona] (UNIVPM), Department of Biochemistry and Molecular Biology [Indianapolis, IN, USA], Indiana University School of Medicine, Indiana University System-Indiana University System, Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, iMed.UL, Faculty of Pharmacy, University of Lisbon, CESAM & Biology Department, Universidade de Aveiro, Celullar and Molecular Medicine, Università degli Studi di Perugia (UNIPG), Institute of Clinical Molecular Biology, Kiel University, Apoptose et Système Immunitaire (ASI), Vieillissement Cellulaire Intégré et Inflammation (VCII), Adaptation Biologique et Vieillissement = Biological Adaptation and Ageing (B2A), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Biologie Paris Seine (IBPS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Biologie Paris Seine (IBPS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Department of Mathematical Sciences [Aalborg], Aalborg University [Denmark] (AAU), Cambridge Institute for Medical Research (CIMR), University of Cambridge [UK] (CAM), Biozentrum, University of Basel (Unibas), Structural and Computational Biology Unit, European Molecular Biology Laboratory [Grenoble] (EMBL), Rutgers New Jersey Medical School (NJMS), Rutgers University System (Rutgers), Université de Perpignan Via Domitia (UPVD), Universidad Pablo de Olavide [Sevilla] (UPO), Department of Neurosciences, Agronomes et Vétérinaires Sans Frontières (AVSF), AVSF, Department of Mathematics [Gakushuin], Gakushuin University, Department of Internal Medicine [Münster, Germany], University of Münster, Neurogenetics laboratory, University Medicine Goettingen, Institut de biologie structurale (IBS - UMR 5075), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS), Université d'Uruguay, Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération (LBCMCP), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Toulouse III - Paul Sabatier (UT3), Institute for Conservation & Improvement of Valentian Agrodiversity (COMAV), Universitat Politecnica de Valencia (UPV), ICBM, University of Chile [Santiago]-Faculty of Medicine, Nutrition, Métabolisme, Aquaculture (NuMéA), Institut National de la Recherche Agronomique (INRA)-Université de Pau et des Pays de l'Adour (UPPA), Department of Cell Biology, Baltimore, Johns Hopkins University School of Medicine, Baylor College of Medicine (BCM), Baylor University, University of Minnesota Medical School, Beijing Candid soft Technology Co. Ltd, Nanjing University of Information Science and Technology, Department of Hepatobiliary and Pancreatic Surgery [Maebashi, Japan], Gunma University Graduate Schoolof Medicine [Maebashi, Japan], Department of Molecular Genetics [Maastricht, The Netherlands], Maastricht University [The Netherlands], Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine (NASU), Institute of Pharmacology of Natural Products and Clinical Pharmacology, Institute of Pharmacology, University of Bern, Imagine - Institut des maladies génétiques (IMAGINE - U1163), Wilmer Eye Institute, Mayo Clinic and Mayo College of Medicine, Rochester, Institute of Biochemistry and Biophysics, Polska Akademia Nauk (PAN)-Sciences, Department of Electrical and Computer Engineering [Waterloo] (ECE), University of Waterloo [Waterloo], Department of Chemistry and Toxicology, Norwegian Veterinary Institute, Department of Gynecologic Oncology, The University of Texas M.D. Anderson Cancer Center [Houston], University of Minho, Friedrich Miescher Laboratory (FML), Charité - Universitätsmedizin Berlin / Charite - University Medicine Berlin, Department of Biomedical Sciences and Biotechnologies, Brescia University, Department of Physiological Chemistry [Bochum], Ruhr-Universität Bochum [Bochum], University of Oslo (UiO), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris-Saclay, Facultés Universitaires Notre Dame de la Paix (FUNDP), COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM), École pratique des hautes études (EPHE)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut de recherche pour le développement [IRD] : UR226, Université du Québec à Montréal = University of Québec in Montréal (UQAM), COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Association française contre les myopathies (AFM-Téléthon)-Sorbonne Université (SU), Université Lille 2 - Faculté de Médecine -Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Lille Nord de France (COMUE)-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Institut National de la Santé et de la Recherche Médicale (INSERM)-Etablissement français du sang [Bourgogne-France-Comté] (EFS [Bourgogne-France-Comté])-Université de Franche-Comté (UFC), COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-IFR50-Institut National de la Santé et de la Recherche Médicale (INSERM), Aix Marseille Université (AMU)-Institut Paoli-Calmettes, Fédération nationale des Centres de lutte contre le Cancer (FNCLCC)-Fédération nationale des Centres de lutte contre le Cancer (FNCLCC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon), Institut de Chimie de Toulouse (ICT-FR 2599), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Université Toulouse 1 Capitole (UT1)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse 1 Capitole (UT1)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées, Université libre de Bruxelles (ULB), Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Universidade Federal do Rio de Janeiro (UFRJ), Institut Bergonié [Bordeaux], UNICANCER, Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), Trafic membranaire et Division cellulaire - Membrane Traffic and Cell Division, Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec-Université Paris-Sud - Paris 11 (UP11), McGill University = Université McGill [Montréal, Canada], Service d'Anatomie et Cytologie Pathologique [CHU Rouen], Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Paris Seine (IBPS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Signaling in Oncogenesis, Angiogenesis and Permeability (CRCINA-ÉQUIPE 15), Centre de Recherche en Cancérologie et Immunologie Nantes-Angers (CRCINA), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE), Université de Nantes (UN)-Université de Nantes (UN)-Centre hospitalier universitaire de Nantes (CHU Nantes)-Centre National de la Recherche Scientifique (CNRS)-Université d'Angers (UA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE), Université de Nantes (UN)-Université de Nantes (UN)-Centre hospitalier universitaire de Nantes (CHU Nantes)-Centre National de la Recherche Scientifique (CNRS)-Université d'Angers (UA), Universidad de Chile = University of Chile [Santiago] (UCHILE), Centro de Investigacion Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISC), Université Montpellier 1 (UM1)-CRLCC Val d'Aurelle - Paul Lamarque-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM), Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Centre National de la Recherche Scientifique (CNRS), Université Panthéon-Sorbonne (UP1)-École pratique des hautes études (EPHE)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Collège de France (CdF (institution)), Université Pierre et Marie Curie - Paris 6 (UPMC)-École pratique des hautes études (EPHE)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Great Ormond Street Hospital for Children [London] (GOSH)-Institute of Child Health, Hokkaido University [Sapporo, Japan], Université Paris sciences et lettres (PSL), Institut National de la Recherche Agronomique (INRA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Vétérinaire de Toulouse (ENVT), Université Fédérale Toulouse Midi-Pyrénées-Ecole d'Ingénieurs de Purpan (INPT - EI Purpan), Université de Lyon-Université de Lyon, Centre d’Infection et d’Immunité de Lille (CIIL) - INSERM U1019 - UMR 9017 (CIIL), Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Centre National de la Recherche Scientifique (CNRS), Organisation Nucléaire et Oncogenèse - Nuclear Organization and Oncogenesis, Université Paris Diderot - Paris 7 (UPD7)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche en Cancérologie de Lyon (UNICANCER/CRCL), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre Léon Bérard [Lyon], Centre National de la Recherche Scientifique (CNRS)-Institut de biologie physico-chimique (IBPC (FR_550)), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU), The Beatson Institute for Cancer Research, Beijing Normal University (BNU), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Fédération de Recherche Bézout-ESIEE Paris-École des Ponts ParisTech (ENPC)-Université Paris-Est Marne-la-Vallée (UPEM), COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA), Université de Lyon-Université de Lyon-Centre de Recherche en Cancérologie de Lyon (UNICANCER/CRCL), Université de Lyon-Université de Lyon-Centre Léon Bérard [Lyon]-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre Léon Bérard [Lyon], Vall d’Hebron Research Institute (VHIR), Institut Curie [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM), Universidade Nova de Lisboa = NOVA University of Lisboa (NOVA), Université de Montpellier (UM)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Doshisha University [Kyoto], Université européenne de Bretagne - European University of Brittany (UEB)-Télécom Bretagne-Institut Mines-Télécom [Paris] (IMT), Università degli Studi di Firenze = University of Florence [Firenze], University of Zaragoza - Universidad de Zaragoza [Zaragoza]-Nanoscience Institute of Aragon - INA [Zaragoza, Spain]-Fundación Agencia Aragonesa para la Investigación y el Desarrollo - ARAID [Zaragoza, Spain], Central China Normal University [Wuhan, China], Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-UMR E4320 (TIRO-MATOs), COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Université Pierre et Marie Curie - Paris 6 (UPMC)-École pratique des hautes études (EPHE)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-École pratique des hautes études (EPHE)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut Claudius Regaud, Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Institut de biologie structurale [1992-2019] (IBS - UMR 5075 [1992-2019]), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre de Biologie Intégrative (CBI), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Nanjing University of Information Science and Technology (NUIST), Facultad de Medicina [Buenos Aires], Universidad de Buenos Aires [Buenos Aires] (UBA)-Universidad de Buenos Aires [Buenos Aires] (UBA)-Consejo Nacional de Investigaciones Científicas y Técnicas [Buenos Aires] (CONICET), Université de Technologie de Belfort-Montbeliard (UTBM)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Clermont Auvergne (UCA)-Institut National de la Recherche Agronomique (INRA), Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille, Droit et Santé-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Consejo Nacional de Investigaciones Científicas y Técnicas [Buenos Aires] (CONICET)-Universidad Nacional de San Martin (UNSAM), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Centre National de la Recherche Scientifique (CNRS)-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille, George Mason University [Fairfax]-Center for Applied Proteomics and Molecular Medicine, Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Institute of Infection, Immunity and Inflammation [Glasgow, UK]-University of Glasgow, Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Pierre et Marie Curie - Paris 6 (UPMC), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Biologie Paris Seine (IBPS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB), Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-CHU Rouen, Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Gustave Roussy (IGR)-Université Paris-Sud - Paris 11 (UP11), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Pasteur [Paris], Centre Léon Bérard [Lyon]-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre Léon Bérard [Lyon]-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Biologie Paris Seine (IBPS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), and Centre National de la Recherche Scientifique (CNRS)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)
- Subjects
0301 basic medicine ,Settore BIO/06 ,biology ,Cell Biology ,[SDV.BC]Life Sciences [q-bio]/Cellular Biology ,biology.organism_classification ,Cell biology ,Interpretation (model theory) ,03 medical and health sciences ,Arama ,030104 developmental biology ,Molecular Biology ,Humanities ,ComputingMilieux_MISCELLANEOUS - Abstract
Author(s): Klionsky, DJ; Abdelmohsen, K; Abe, A; Abedin, MJ; Abeliovich, H; Arozena, AA; Adachi, H; Adams, CM; Adams, PD; Adeli, K; Adhihetty, PJ; Adler, SG; Agam, G; Agarwal, R; Aghi, MK; Agnello, M; Agostinis, P; Aguilar, PV; Aguirre-Ghiso, J; Airoldi, EM; Ait-Si-Ali, S; Akematsu, T; Akporiaye, ET; Al-Rubeai, M; Albaiceta, GM; Albanese, C; Albani, D; Albert, ML; Aldudo, J; Algul, H; Alirezaei, M; Alloza, I; Almasan, A; Almonte-Beceril, M; Alnemri, ES; Alonso, C; Altan-Bonnet, N; Altieri, DC; Alvarez, S; Alvarez-Erviti, L; Alves, S; Amadoro, G; Amano, A; Amantini, C; Ambrosio, S; Amelio, I; Amer, AO; Amessou, M; Amon, A; An, Z; Anania, FA; Andersen, SU; Andley, UP; Andreadi, CK; Andrieu-Abadie, N; Anel, A; Ann, DK; Anoopkumar-Dukie, S; Antonioli, M; Aoki, H; Apostolova, N; Aquila, S; Aquilano, K; Araki, K; Arama, E; Aranda, A; Araya, J; Arcaro, A; Arias, E; Arimoto, H; Ariosa, AR; Armstrong, JL; Arnould, T; Arsov, I; Asanuma, K; Askanas, V; Asselin, E; Atarashi, R; Atherton, SS; Atkin, JD; Attardi, LD; Auberger, P; Auburger, G; Aurelian, L; Autelli, R
- Published
- 2016
- Full Text
- View/download PDF
12. The FAP motif within human ATG7, an autophagy-related E1-like enzyme, is essential for the E2-substrate reaction of LC3 lipidation
- Author
-
Manabu Yamasaki, Takashi Ueno, Masaaki Komatsu, and Isei Tanida
- Subjects
Microtubule-associated protein ,Ubiquitin-activating enzyme ,Amino Acid Motifs ,Molecular Sequence Data ,Mutant ,Lipid-anchored protein ,Ubiquitin-Activating Enzymes ,Plasma protein binding ,Biology ,Ubiquitin-conjugating enzyme ,Autophagy-Related Protein 7 ,Autophagy-Related Protein 5 ,Substrate Specificity ,Mice ,Structure-Activity Relationship ,Autophagy ,Animals ,Humans ,Amino Acid Sequence ,Molecular Biology ,Peptide sequence ,Cell Biology ,Lipid Metabolism ,Molecular biology ,Mutation ,Ubiquitin-Conjugating Enzymes ,embryonic structures ,Small Ubiquitin-Related Modifier Proteins ,Mutant Proteins ,Protein Multimerization ,biological phenomena, cell phenomena, and immunity ,Microtubule-Associated Proteins ,Autophagy-Related Protein 12 ,Protein Binding - Abstract
ATG7 is an autophagy-related E1-like enzyme that is essential for two ubiquitination-like reactions, ATG12-conjugation and LC3-lipidation. The existence of functional sequences at the amino-terminal region of human ATG7 remains uncertain. Mutational analyses of ATG7 revealed that both mutant ATG7ΔFAP lacking the FAP motif and ATG7FAPtoDDD, in which the Phe15-Ala16-Pro17 sequence was changed to Asp-Asp-Asp, could not complement defects in endogenous ATG12-conjugation and LC3-lipidation when expressed in Atg7-deficient mouse embryonic fibroblasts (MEFs). However, wild-type ATG7 complemented the defects in these cells. Overexpression of GFP-ATG10 and GFP-ATG12 rescued a defect in ATG12-conjugation in Atg7-deficient MEFs expressing mutant ATG7ΔFAP and ATG7FAPtoDDD, whereas overexpression of all ATG proteins related to ATG12-conjugation and LC3-lipidation could not rescue a defect in LC3-lipidation in Atg7-deficient MEFs expressing these ATG7 mutants. Both ATG7ΔFAP and ATG7FAPtoDDD mutants showed severe defects in the formation of an E2-substrate intermediate of ATG3 with LC3 in LC3-lipidation, but were able to form an E1-substrate intermediate of ATG7 with LC3 and the E1- and E2-substrate intermediates in ATG12-conjugation with reduced efficiency. These ATG7 mutants could also form the ATG12-ATG3 conjugate. Co-immunoprecipitation experiments revealed that the FAP motif of ATG7 is essential for the interaction of ATG7 with ATG3, but not for ATG7-homodimerization. These results indicated that the FAP motif of ATG7 is indispensable for formation of the ATG3-LC3 E2-substrate intermediate through the interaction of ATG7 with ATG3.
- Published
- 2012
- Full Text
- View/download PDF
13. Hepatic steatosis inhibits autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression
- Author
-
Kenichi Ikejima, Kousuke Izumi, Sumio Watanabe, Isei Tanida, Takashi Ueno, Shunhei Yamashina, and Yoshihiro Inami
- Subjects
Male ,Autophagosome ,Biophysics ,Cellular homeostasis ,Biology ,Protein degradation ,Biochemistry ,Cathepsin B ,Mice ,Phagosomes ,Lysosome ,Autophagy ,medicine ,Animals ,Molecular Biology ,Cathepsin ,Proteins ,Lipid metabolism ,Cell Biology ,Hydrogen-Ion Concentration ,Cathepsins ,Cell biology ,Fatty Liver ,Mice, Inbred C57BL ,medicine.anatomical_structure ,Hepatocytes ,Acids - Abstract
Autophagy, one of protein degradation system, contributes to maintain cellular homeostasis and cell defense. Recently, some evidences indicated that autophagy and lipid metabolism are interrelated. Here, we demonstrate that hepatic steatosis impairs autophagic proteolysis. Though accumulation of autophagosome is observed in hepatocytes from ob/ob mice, expression of p62 was augmented in liver from ob/ob mice more than control mice. Moreover, degradation of the long-lived protein leucine was significantly suppressed in hepatocytes isolated from ob/ob mice. More than 80% of autophagosomes were stained by LysoTracker Red (LTR) in hepatocytes from control mice; however, rate of LTR-stained autophagosomes in hepatocytes were suppressed in ob/ob mice. On the other hand, clearance of autolysosomes loaded with LTR was blunted in hepatocytes from ob/ob mice. Although fusion of isolated autophagosome and lysosome was not disturbed, proteinase activity of cathepsin B and L in autolysosomes and cathepsin B and L expression of liver were suppressed in ob/ob mice. These results indicate that lipid accumulation blunts autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression.
- Published
- 2011
- Full Text
- View/download PDF
14. Autophagosome Formation and Molecular Mechanism of Autophagy
- Author
-
Isei Tanida
- Subjects
Autophagosome ,Atg1 ,Physiology ,ATG8 ,Clinical Biochemistry ,Biology ,Endoplasmic Reticulum ,Biochemistry ,ATG12 ,Phagosomes ,Autophagy ,Animals ,Humans ,Molecular Biology ,General Environmental Science ,Endoplasmic reticulum ,Cell Membrane ,Cell Biology ,Cell biology ,Oxidative Stress ,Multiprotein Complexes ,General Earth and Planetary Sciences ,Rab ,Lysosomes ,Intracellular - Abstract
Autophagy (macroautophagy), or the degradation of large numbers of cytoplasmic components, is induced by extracellular and intracellular signals, including oxidative stress, ceramide, and endoplasmic reticulum stress. This dynamic process involves membrane formation and fusion, including autophagosome formation, autophagosome-lysosome fusion, and the degradation of intra-autophagosomal contents by lysosomal hydrolases. Autophagy is associated with tumorigenesis, neurodegenerative diseases, cardiomyopathy, Crohn's disease, fatty liver, type II diabetes, defense against intracellular pathogens, antigen presentation, and longevity. Among the proteins and multimolecular complexes that contribute to autophagosome formation are the PI(3)-binding proteins, the PI3-phosphatases, the Rab proteins, the Atg1/ULK1 protein-kinase complex, the Atg9•Atg2-Atg18 complex, the Vps34-Atg6/beclin1 class III PI3-kinase complex, and the Atg12 and Atg8/LC3 conjugation systems. Two ubiquitin-like modifications, the Atg12 and LC3 conjugations, are essential for membrane elongation and autophagosome formation. Recent findings have revealed that processes of selective autophagy, including pexophagy, mitophagy, ERphagy (reticulophagy), and the p62-dependent degradation of ubiquitin-positive aggregates, are physiologically important in various disease states, whereas "classical" autophagy is considered nonselective degradation. Processes of selective autophagy require specific Atg proteins in addition to the "core" Atg complexes. Finally, methods to monitor autophagic activity in mammalian cells are described.
- Published
- 2011
- Full Text
- View/download PDF
15. Characterization of CAA0225, a Novel Inhibitor Specific for Cathepsin L, as a Probe for Autophagic Proteolysis
- Author
-
Eiki Kominami, Takashi Ueno, Isei Tanida, Mitsuo Murata, Katsuyuki Takahashi, and Naoko Minematsu-Ikeguchi
- Subjects
Ethylene Oxide ,Male ,Cytoplasm ,Cathepsin L ,Phenylalanine ,Pharmaceutical Science ,Cathepsin E ,In Vitro Techniques ,Biology ,Cathepsin A ,Cathepsin B ,Cell Line ,Cathepsin C ,Mice ,Structure-Activity Relationship ,Cathepsin O ,Cathepsin H ,Cathepsin L1 ,Benzyl Compounds ,Autophagy ,Animals ,Humans ,Rats, Wistar ,Adaptor Proteins, Signal Transducing ,Pharmacology ,Hydrolysis ,Stereoisomerism ,Dipeptides ,General Medicine ,Cathepsins ,Molecular biology ,Rats ,Mice, Inbred C57BL ,Cysteine Endopeptidases ,Biochemistry ,biology.protein ,Epoxy Compounds ,Apoptosis Regulatory Proteins ,Lysosomes ,Microtubule-Associated Proteins - Abstract
We screened a series of new epoxysuccinyl peptides for the development of a lysosomal cathepsin L-specific inhibitor. Among the compounds tested, (2S,3S)-oxirane-2,3-dicarboxylic acid 2-[((S)-1-benzylcarbamoyl-2-phenyl-ethyl)-amide] 3-{[2-(4-hydroxy-phenyl)-ethyl]-amide} (compound CAA0225) was the most potent inhibitor of cathepsin L. CAA0225 inhibited rat liver cathepsin L with IC50 values of 1.9 nM, but not rat liver cathepsin B (IC50, >1000-5000 nM). To assess the contribution of cathepsin L to lysosomal proteolysis, we evaluated autophagy, which is the process of lysosomal self-degradation of cell constituents. In HeLa and Huh-7 cells cultured under nutrient-deprived conditions CAA0225 significantly inhibited degradation of long-lived proteins; however, the magnitude of inhibition was comparable to that in the presence of CA-074-OMe, which is a cathepsin B-specific inhibitor. Thus the contributions of cathepsin L and cathepsin B to autophagic protein degradation of cytoplasmic proteins are nearly equal. During autophagy, microtubule-associated protein IA/IB light chain 3-II (LC3-II) and gamma-aminobutyric acid (A) receptor-associated protein (GABARAP)-II, which are specific markers of autophagosomal membranes that engulf cytoplasmic components, also undergo degradation upon fusion of autophagosomes with lysosomes. CAA0225 effectively inhibited degradation of LC3-II and GABARAP, whereas CA-074-OMe had only a marginal effect on their levels. Therefore we conclude that cathepsin L does not play a general role in the degradation of proteins in the lumen of autophagosomes, but rather is involved specifically in the degradation of autophagosomal membrane markers.
- Published
- 2009
- Full Text
- View/download PDF
16. Synthetic fibril peptide promotes clearance of scrapie prion protein by lysosomal degradation
- Author
-
Ken'ichi Hagiwara, Yuko Okemoto-Nakamura, Keiko Tanaka, Yoshio Yamakawa, Masami Miura, Kentaro Hanada, Isei Tanida, and Masahiro Nishijima
- Subjects
PrPSc Proteins ,Endosome ,animal diseases ,Immunology ,Scrapie ,Endosomes ,Biology ,Fibril ,Cathepsin D ,Microbiology ,Mice ,Ubiquitin ,Virology ,medicine ,Animals ,Amino Acid Sequence ,Peptide sequence ,Cathepsin ,Microscopy, Confocal ,Lysosome-Associated Membrane Glycoproteins ,Molecular biology ,PrP 27-30 Protein ,nervous system diseases ,Membrane protein ,biology.protein ,Proteasome inhibitor ,Lysosomes ,Peptides ,Sequence Alignment ,medicine.drug - Abstract
Transmissible spongiform encephalopathies are infectious and neurodegenerative disorders that cause neural deposition of aggregates of the disease-associated form of PrP(Sc). PrP(Sc) reproduces by recruiting and converting the cellular PrP(C), and ScN2a cells support PrP(Sc) propagation. We found that incubation of ScN2a cells with a fibril peptide named P9, which comprises an intrinsic sequence of residues 167-184 of mouse PrP(C), significantly reduced the amount of PrP(Sc) in 24 hr. P9 did not affect the rates of synthesis and degradation of PrP(C). Interestingly, immunofluorescence analysis showed that the incubation of ScN2a cells with P9 induced colocalization of the accumulation of PrP with cathepsin D-positive compartments, whereas the accumulation of PrP in the cells without P9 colocalized mainly with lysosomal associated membrane proteins (LAMP)-1-positive compartments but rarely with cathepsin D-positive compartments in perinuclear regions. Lysosomal enzyme inhibitors attenuated the anti-PrP(Sc) activity; however, a proteasome inhibitor did not impair P9 activity. In addition, P9 neither promoted the ubiquitination of cellular proteins nor caused the accumulation of LC3-II, a biochemical marker of autophagy. These results indicate that P9 promotes PrP(Sc) redistribution from late endosomes to lysosomes, thereby attaining PrP(Sc) degradation.
- Published
- 2008
- Full Text
- View/download PDF
17. Consideration about negative controls for LC3 and expression vectors for four colored fluorescent protein-LC3 negative controls
- Author
-
Kentaro Hanada, Isei Tanida, Takashi Ueno, Shoichi Ishiura, Eiki Kominami, and Toshiyuki Yamaji
- Subjects
chemistry.chemical_classification ,Expression vector ,Recombinant Fusion Proteins ,Genetic Vectors ,Autophagy ,Mutant ,Cell Biology ,Biology ,Molecular biology ,Green fluorescent protein ,Luminescent Proteins ,Cytosol ,Plasmid ,Enzyme ,chemistry ,Reference Values ,embryonic structures ,Animals ,Humans ,biological phenomena, cell phenomena, and immunity ,Microtubule-Associated Proteins ,Molecular Biology ,Intracellular - Abstract
A cytosolic form of LC3 is conjugated to phosphatidylethanolamine by Atg7, an E1-like enzyme, and Atg3, an E2-like enzyme, during autophagy. To monitor intracellular autophagosomes and autolysosomes, GFP-LC3 is a useful tool. However, GFP-LC3 can aggregate without being conjugated to phosphatidylethanolamine, especially when GFP-LC3 is transiently expressed (Kuma A, Matsui M, Mizushima N. Autophagy 2007; 3:323-8). Therefore, as a negative control, we investigated a mutant human LC3DeltaG protein in which the C-terminal Gly(120) essential for LC3-lipidation is deleted, and generated a set of expression plasmids for wild-type human LC3 and mutant LC3DeltaG fused to either CFP, GFP, YFP, or HcRed at the N terminus. We found that the mutant LC3DeltaG protein does not react with human Atg7 and Atg3, indicating that LC3-lipidation does not occur, and few puncta containing mutant LC3DeltaG form under starvation conditions. As observed with wildtype HcRed-LC3, mutant HcRed-LC3DeltaG also co-localizes with polyQ150-aggregates suggesting that the colocalization of HcRed- LC3 to polyQ150-aggregates is independent of LC3-lipidation. These mutant LC3DeltaG proteins will be useful negative controls in recognizing non-specific fluorescent protein-LC3 aggregates.
- Published
- 2008
- Full Text
- View/download PDF
18. Endoplasmic reticulum stress caused by aggregate-prone proteins containing homopolymeric amino acids
- Author
-
Shoichi Ishiura, Eriko Fujita, Noboru Sasagawa, Takashi Momoi, Yoriko Kouroku, Naohiro Uchio, Kazuya Toriumi, Yoko Oma, Reiko Kuroda, and Isei Tanida
- Subjects
chemistry.chemical_classification ,biology ,Endoplasmic reticulum ,STIM1 ,Cell Biology ,Protein aggregation ,Biochemistry ,Amino acid ,Cell biology ,Proteasome ,Ubiquitin ,chemistry ,biology.protein ,Unfolded protein response ,Cytotoxicity ,Molecular Biology - Abstract
Many human proteins have homopolymeric amino acid (HPAA) tracts, but their physiological functions or cellular effects are not well understood. Previously, we expressed 20 HPAAs in mammalian cells and showed characteristic intracellular localization, in that hydrophobic HPAAs aggregated strongly and caused high cytotoxicity in proportion to their hydrophobicity. In the present study, we investigated the cytotoxicity of these aggregate-prone hydrophobic HPAAs, assuming that the ubiquitin proteasome system is impaired in the same manner as other well-known aggregate-prone polyglutamine-containing proteins. Some highly hydrophobic HPAAs caused a deficiency in the ubiquitin proteasome system and excess endoplasmic reticulum stress, leading to apoptosis. These results indicate that the property of causing excess endoplasmic reticulum stress by proteasome impairment may contribute to the strong cytotoxicity of highly hydrophobic HPAAs, and proteasome impairment and the resulting excess endoplasmic reticulum stress is not a common cytotoxic effect of aggregate-prone proteins such as polyglutamine.
- Published
- 2007
- Full Text
- View/download PDF
19. Macroautophagy is essential for killing of intracellular Burkholderia pseudomallei in human neutrophils
- Author
-
Manabu Ato, Isei Tanida, Michinaga Ogawa, Yasuo Uchiyama, Joanne M. Stevens, Richard W. Titball, Donporn Riyapa, Darawan Rinchai, Surachat Buddhisa, Mark P. Stevens, Kusumawadee Utispan, Masato Koike, and Ganjana Lertmemongkolchai
- Subjects
Melioidosis ,Burkholderia pseudomallei ,Neutrophils ,Intracellular Space ,Cytoplasmic Granules ,Type three secretion system ,Microbiology ,Cytosol ,Phagosomes ,medicine ,Translational Brief Report ,Autophagy ,Humans ,Secretion ,Molecular Biology ,Bacterial Secretion Systems ,Phagosome ,Cathepsin ,Microbial Viability ,biology ,Lysosome-Associated Membrane Glycoproteins ,Cell Biology ,biochemical phenomena, metabolism, and nutrition ,biology.organism_classification ,medicine.disease ,bacterial infections and mycoses ,Burkholderia ,bacteria ,Lysosomes ,Microtubule-Associated Proteins ,Intracellular ,Biomarkers - Abstract
Neutrophils play a key role in the control of Burkholderia pseudomallei, the pathogen that causes melioidosis. Here, we show that survival of intracellular B. pseudomallei was significantly increased in the presence of 3-methyladenine or lysosomal cathepsin inhibitors. The LC3-flux was increased in B. pseudomallei-infected neutrophils. Concordant with this result, confocal microscopy analyses using anti-LC3 antibodies revealed that B. pseudomallei-containing phagosomes partially overlapped with LC3-positive signal at 3 and 6 h postinfection. Electron microscopic analyses of B. pseudomallei-infected neutrophils at 3 h revealed B. pseudomallei-containing phagosomes that occasionally fused with phagophores or autophagosomes. Following infection with a B. pseudomallei mutant lacking the Burkholderia secretion apparatus Bsa Type III secretion system, neither this characteristic structure nor bacterial escape into the cytosol were observed. These findings indicate that human neutrophils are able to recruit autophagic machinery adjacent to B. pseudomallei-containing phagosomes in a Type III secretion system-dependent manner.
- Published
- 2015
20. Lysosomal Turnover of GABARAP-Phospholipid Conjugate is Activated During Differentiation of C2C12 Cells to Myotubes without Inactivation of the mTor Kinase-Signaling Pathway
- Author
-
Eiki Kominami, Isei Tanida, Mika Wakabayashi, Takashi Ueno, Yu-shin Sou, Masato Hirata, Naoko Minematsu-Ikeguchi, and Takashi Kanematsu
- Subjects
Male ,Recombinant Fusion Proteins ,GABARAP ,Muscle Fibers, Skeletal ,Phospholipid ,Endogeny ,Biology ,Cell Line ,Mice ,chemistry.chemical_compound ,Autophagy ,Animals ,Humans ,Tissue Distribution ,Molecular Biology ,Phospholipids ,PI3K/AKT/mTOR pathway ,Adaptor Proteins, Signal Transducing ,Sirolimus ,Antibiotics, Antineoplastic ,Myogenesis ,TOR Serine-Threonine Kinases ,HEK 293 cells ,Membrane Proteins ,Cell Differentiation ,Cell Biology ,Cell biology ,Cytoskeletal Proteins ,Biochemistry ,chemistry ,Starvation ,Apoptosis Regulatory Proteins ,Lysosomes ,Microtubule-Associated Proteins ,Protein Kinases ,C2C12 ,Signal Transduction - Abstract
Although conjugation of overexpressed GABARP to phospholipid has been reported during starvation-induced autophagy, it is unclear whether endogenous GABARAP-phospholipid conjugation is also activated under starvation conditions. We observed little accumulation of GABARAP-phospholipid conjugate (GABARAP-PL) in mouse liver and kidney under starvation conditions, whereas endogenous LC3-phospholipid conjugate (LC3-II) accumulated. A small amount of endogenous GABARAP-PL was observed in the heart, independent of starvation. In rapamycin-treated HEK293 cells, there was little accumulation of endogenous GABARAP-PL, even in the presence of lysosomal protease-inhibitors, whereas there was significant accumulation of endogenous LC3-II, together with inactivation of the mTor kinase-signaling pathway. In HeLa and C2C12 cells, GABARAP-PL accumulation in the presence of lysosomal protease inhibitors was independent of starvation-induced autophagy, whereas LC3-II accumulation was significant during starvation-induced autophagy. Interestingly, we observed activation of lysosomal turnover of GABARAP-PL during the differentiation of C2C12 cells to myotubes, along with increased lysosomal turnover of LC3-II. Under these conditions, S6 ribosomal protein was still phosphorylated, suggesting that the mTor kinase-signaling pathway is active during the differentiation of C2C12 cells to myotubes, in contrast to starvation-induced autophagy. These results indicated that lysosomal turnover of GABARAP-PL was activated during the differentiation of C2C12 cells to myotubes without inactivation of the mTor kinase-signaling pathway, whereas little lysosomal turnover of GABARAP-PL was activated during starvation-induced autophagy.
- Published
- 2006
- Full Text
- View/download PDF
21. Atg8L/Apg8L is the fourth mammalian modifier of mammalian Atg8 conjugation mediated by human Atg4B, Atg7 and Atg3
- Author
-
Takashi Ueno, Eiki Kominami, Isei Tanida, Naoko Minematsu-Ikeguchi, and Yu-shin Sou
- Subjects
Yellow fluorescent protein ,biology ,GABARAP ,ATG8 ,HEK 293 cells ,Cell Biology ,Cleavage (embryo) ,biology.organism_classification ,Biochemistry ,Homology (biology) ,In vitro ,Cell biology ,HeLa ,biology.protein ,Molecular Biology - Abstract
Murine Atg8L/Apg8L has significant homology with the other known mammalian Atg8 homologs, LC3, GABARAP and GATE-16. However, it is unclear whether murine Atg8L modification is mediated by human Atg4B, Atg7 and Atg3. Expression of Atg8L in HEK293 cells led to cleavage of its C-terminus. In vitro, the C-terminus of Atg8L was cleaved by human Atg4B, but not human Atg4A or Atg4C. Atg8L-I formed an E1-substrate intermediate with Atg7C572S, and an E2-substrate intermediate with Atg3C264S. A modified form of Atg8L was detected in the pelletable fraction in the presence of lysosomal protease inhibitors under nutrient-rich conditions. Cyan fluorescent protein (CFP)–Atg8L colocalized with yellow fluorescent protein (YFP)–LC3 in HeLa cells in the presence of the inhibitors. However, little accumulation of the modified form of Atg8L was observed under conditions of starvation. These results indicate that Atg8L is the fourth modifier of mammalian Atg8 conjugation.
- Published
- 2006
- Full Text
- View/download PDF
22. Phosphatidylserine in Addition to Phosphatidylethanolamine Is an in Vitro Target of the Mammalian Atg8 Modifiers, LC3, GABARAP, and GATE-16
- Author
-
Masaaki Komatsu, Isei Tanida, Takashi Ueno, Eiki Kominami, and Yu-shin Sou
- Subjects
Autophagy-Related Proteins ,Lipid-anchored protein ,Ubiquitin-Activating Enzymes ,Autophagy-Related Protein 7 ,Biochemistry ,chemistry.chemical_compound ,Adenosine Triphosphate ,Ethanolamine ,Phospholipids ,Glutathione Transferase ,Liposome ,Microfilament Proteins ,Temperature ,Esters ,Phosphatidylserine ,Lipids ,Recombinant Proteins ,Electrophoresis, Polyacrylamide Gel ,Microtubule-Associated Proteins ,Plasmids ,Protein Binding ,Saccharomyces cerevisiae Proteins ,ATG8 ,GABARAP ,Molecular Sequence Data ,Phospholipid ,Phosphatidylserines ,Biology ,Models, Biological ,Humans ,Amino Acid Sequence ,Molecular Biology ,Adaptor Proteins, Signal Transducing ,Phosphatidylethanolamine ,Sequence Homology, Amino Acid ,Phosphatidylethanolamines ,Autophagy-Related Protein 8 Family ,Cell Biology ,In vitro ,Protein Structure, Tertiary ,Models, Chemical ,chemistry ,Liposomes ,Mutation ,Ubiquitin-Conjugating Enzymes ,Chromatography, Thin Layer ,Apoptosis Regulatory Proteins ,Carrier Proteins ,HeLa Cells - Abstract
In yeast, phosphatidylethanolamine is a target of the Atg8 modifier in ubiquitylation-like reactions essential for autophagy. Three human Atg8 (hAtg8) homologs, LC3, GABARAP, and GATE-16, have been characterized as modifiers in reactions mediated by hAtg7 (an E1-like enzyme) and hAtg3 (an E2-like enzyme) as in yeast Atg8 lipidation, but their final targets have not been identified. The results of a recent study in which COS7 cells were incubated with [14C]ethanolamine for 48 h suggested that phosphatidylethanolamine is a target of LC3. However, these results were not conclusive because of the long incubation time. To identify the phospholipid targets of Atg8 homologs, we reconstituted conjugation systems for mammalian Atg8 homologs in vitro using purified recombinant Atg proteins and liposomes. Each purified mutant Atg8 homolog with an exposed C-terminal Gly formed an E1-substrate intermediate with hAtg7 via a thioester bond in an ATP-dependent manner and formed an E2-substrate intermediate with hAtg3 via a thioester bond dependent on ATP and hAtg7. A conjugated form of each Atg8 homolog was observed in the presence of hAtg7, hAtg3, ATP, and liposomes. In addition to phosphatidylethanolamine, in vitro conjugation experiments using synthetic phospholipid liposomes showed that phosphatidylserine is also a target of LC3, GABARAP, and GATE-16. In contrast, thin layer chromatography of phospholipids released on hAtg4B-digestion from endogenous LC3-phospholipid conjugate revealed that phosphatidylethanolamine, but not phosphatidylserine, is the predominant target phospholipid of LC3 in vivo. The discrepancy between in vitro and in vivo reactions suggested that there may be selective factor(s) involved in the endogenous LC3 conjugation system.
- Published
- 2006
- Full Text
- View/download PDF
23. Excess Peroxisomes Are Degraded by Autophagic Machinery in Mammals
- Author
-
Junji Ezaki, Masaaki Komatsu, Sadaki Yokota, Isei Tanida, Takashi Ueno, Keiji Tanaka, Tomoki Chiba, Junichi Iwata, and Eiki Kominami
- Subjects
Male ,Autophagy ,Mutant ,Phthalate ,Cell Biology ,Biology ,Peroxisome ,Peroxisome degradation ,Autophagy-Related Protein 7 ,Biochemistry ,Yeast ,Mice, Inbred C57BL ,Mice ,chemistry.chemical_compound ,Liver ,chemistry ,Essential gene ,Diethylhexyl Phthalate ,Peroxisomes ,Animals ,Microtubule-Associated Proteins ,Molecular Biology - Abstract
Peroxisomes are degraded by autophagic machinery termed "pexophagy" in yeast; however, whether this is essential for peroxisome degradation in mammals remains unknown. Here we have shown that Atg7, an essential gene for autophagy, plays a pivotal role in the degradation of excess peroxisomes in mammals. Following induction of peroxisomes by a 2-week treatment with phthalate esters in control and Atg7-deficient livers, peroxisomal degradation was monitored within 1 week after discontinuation of phthalate esters. Although most of the excess peroxisomes in the control liver were selectively degraded within 1 week, this rapid removal was exclusively impaired in the mutant liver. Furthermore, morphological analysis revealed that surplus peroxisomes, but not mutant hepatocytes, were surrounded by autophagosomes in the control. Our results indicated that the autophagic machinery is essential for the selective clearance of excess peroxisomes in mammals. This is the first direct evidence for the contribution of autophagic machinery in peroxisomal degradation in mammals.
- Published
- 2006
- Full Text
- View/download PDF
24. Lysosomal Turnover, but Not a Cellular Level, of Endogenous LC3 is a Marker for Autophagy
- Author
-
Isei Tanida, Takashi Ueno, Naoko Minematsu-Ikeguchi, and Eiki Kominami
- Subjects
Hydrolases ,Biological Transport, Active ,Endogeny ,Cellular level ,Cell Line ,HeLa ,chemistry.chemical_compound ,Microscopy, Electron, Transmission ,Leucine ,Phagosomes ,Pepstatins ,Autophagy ,Humans ,Molecular Biology ,Lysosomal proteases ,Mannose 6-phosphate receptor ,biology ,HEK 293 cells ,Cell Biology ,biology.organism_classification ,Cell biology ,chemistry ,Biochemistry ,embryonic structures ,biological phenomena, cell phenomena, and immunity ,Lysosomes ,Microtubule-Associated Proteins ,Biomarkers ,Pepstatin - Abstract
During starvation-induced autophagy in mammals, autophagosomes form and fuse with lysosomes, leading to the degradation of the intra-autophagosomal contents by lysosomal proteases. During the formation of autophagosomes, LC3 is lipidated, and this LC3-phospholipid conjugate (LC3-II) is localized on autophagosomes and autolysosomes. While intra-autophagosomal LC3-II may be degraded by lysosomal hydrolases, recent studies have regarded LC3-II accumulation as marker of autophagy. The effect of lysosomal turnover of endogenous LC3-II in this process, however, has not been considered. We therefore investigated the lysosomal turnover of endogenous LC3-II during starvation-induced autophagy using E64d and pepstatin A, which inhibit lysosomal proteases, including cathepsins B, D and L. We found that endogenous LC3-II significantly accumulated in the presence of E64d and pepstatin A under starvation conditions, increasing about 3.5 fold in HEK293 cells and about 6.7 fold in HeLa cells compared with that in their absence, whereas the amount of LC3-II in their absence is cell-line dependent. Morphological analyses indicated that endogenous LC3-positive puncta and autolysosomes increased in HeLa cells under starvation conditions in the presence of these inhibitors. These results indicate that endogenous LC3-II is considerably degraded by lysosomal hydrolases after formation of autolysosomes, and suggest that lysosomal turnover, not a transient amount, of this protein reflects starvation-induced autophagic activity.
- Published
- 2005
- Full Text
- View/download PDF
25. HsAtg4B/HsApg4B/Autophagin-1 Cleaves the Carboxyl Termini of Three Human Atg8 Homologues and Delipidates Microtubule-associated Protein Light Chain 3- and GABAA Receptor-associated Protein-Phospholipid Conjugates
- Author
-
Junji Ezaki, Naoko Minematsu-Ikeguchi, Isei Tanida, Yu-shin Sou, Eiki Kominami, and Takashi Ueno
- Subjects
Autophagy-Related Proteins ,Lipid-anchored protein ,Microtubules ,Biochemistry ,chemistry.chemical_compound ,Promoter Regions, Genetic ,Glutathione Transferase ,Alanine ,Lipids ,Cysteine protease ,Cysteine Endopeptidases ,embryonic structures ,RNA Interference ,biological phenomena, cell phenomena, and immunity ,Microtubule-Associated Proteins ,Plasmids ,Protein Binding ,Saccharomyces cerevisiae Proteins ,GABARAP ,ATG8 ,Green Fluorescent Proteins ,Molecular Sequence Data ,Biology ,Transfection ,Cleavage (embryo) ,Models, Biological ,Cell Line ,Phagocytosis ,Escherichia coli ,Phospholipase D ,Humans ,Amino Acid Sequence ,Cysteine ,Molecular Biology ,Binding Sites ,Cell-Free System ,Sequence Homology, Amino Acid ,Cell Membrane ,Autophagy-Related Protein 8 Family ,Cell Biology ,Glutathione ,Receptors, GABA-A ,Culture Media ,Protein Structure, Tertiary ,Luminescent Proteins ,Microscopy, Fluorescence ,chemistry ,Mutation ,Mutagenesis, Site-Directed ,Autophagin ,HeLa Cells - Abstract
In yeast, Atg4/Apg4 is a unique cysteine protease responsible for the cleavage of the carboxyl terminus of Atg8/Apg8/Aut7, a reaction essential for its lipidation during the formation of autophagosomes. However, it is still unclear whether four human Atg4 homologues cleave the carboxyl termini of the three human Atg8 homologues, microtubule-associated protein light chain 3 (LC3), GABARAP, and GATE-16. Using a cell-free system, we found that HsAtg4B, one of the human Atg4 homologues, cleaves the carboxyl termini of these three Atg8 homologues. In contrast, the mutant HsAtg4B(C74A), in which a predicted active site Cys(74) was changed to Ala, lacked proteolytic activity, indicating that Cys(74) is essential for the cleavage activity of cysteine protease. Using phospholipase D, we showed that the modified forms of endogenous LC3 and GABARAP are lipidated and therefore were designated LC3-PL and GABARAP-PL. When purified glutathione S-transferase-tagged HsAtg4B was incubated in vitro with a membrane fraction enriched with endogenous LC3-PL and GABARAP-PL, the mobility of LC3-PL and GABARAP-PL was changed to those of the unmodified proteins. These mobility shifts were not seen when Cys(74) of HsAtg4B was changed to Ala. Overexpression of wild-type HsAtg4B decreased the amount of LC3-PL and GABARAP-PL and increased the amount of unmodified endogenous LC3 and GABARAP in HeLa cells. Expression of CFP-tagged HsAtg4B (CFP-HsAtg4B) and YFP-tagged LC3 in HeLa cells under starvation conditions resulted in a significant decrease in the punctate pattern of distribution of YFP-tagged LC3 and an increase in its cytoplasmic distribution. RNA interference of HsAtg4B increased the amount of LC3-PL in HEK293 cells. Taken together, these results suggest that HsAtg4B negatively regulates the localization of LC3 to a membrane compartment by delipidation.
- Published
- 2004
- Full Text
- View/download PDF
26. The carboxyl terminal 17 amino acids within Apg7 are essential for Apg8 lipidation, but not for Apg12 conjugation
- Author
-
Takashi Ueno, Eiki Kominami, Harumi Yamazaki-Sato, and Isei Tanida
- Subjects
Saccharomyces cerevisiae Proteins ,Molecular Sequence Data ,Mutant ,Saccharomyces cerevisiae ,Biophysics ,Lipid-anchored protein ,Biology ,CVT pathway ,Ubiquitin-like modification ,Aminopeptidases ,Autophagy-Related Protein 7 ,Biochemistry ,Structural Biology ,Autophagy ,Genetics ,Amino Acid Sequence ,Homodimer ,Molecular Biology ,chemistry.chemical_classification ,Phosphatidylethanolamines ,Proteins ,Autophagy-Related Protein 8 Family ,Cell Biology ,biology.organism_classification ,Apg8/Aut7 lipidation ,Protein Structure, Tertiary ,Amino acid ,Protein Transport ,Enzyme ,chemistry ,Apg3 ,Mutation ,Apg12–Apg5 conjugate ,Apg7 ,Autophagin ,Microtubule-Associated Proteins ,Autophagy-Related Protein 12 - Abstract
In the yeast, Saccharomyces cerevisiae , two ubiquitin-like modifications, Apg12 conjugation with Apg5 and Apg8 lipidation with phosphatidylethanolamine, are essential for autophagy and the cytoplasm-to-vacuole transport of aminopeptidase I (Cvt pathway). As a unique E1-like enzyme, Apg7 activates two modifiers (Apg12 and Apg8) in an ATP-dependent manner and, for this activity, the carboxyl terminal 40 amino acids are essential. For a better understanding of the function of the carboxyl terminus of Apg7, we performed a sequential deletion of the region. A mutant expressing Apg7ΔC17 protein, which lacks the carboxyl 17 amino acids of Apg7, showed defects in both the Cvt pathway and autophagy. Apg8 lipidation is inhibited in the mutant, while Apg12 conjugation occurs normally. A mutant expressing Apg7ΔC13 protein showed a defect in the Cvt pathway, but not autophagy, suggesting that the activity of Apg7 for Apg8 lipidation is more essential for the Cvt pathway than for autophagy. Mutant Apg7ΔC17 protein is still able to interact with Apg8, Apg12 and Apg3, and forms a homodimer, indicating that the deletion of the carboxyl terminal 17 amino acids has little effect on these interactions and Apg7 dimerization. These results suggest that the carboxyl terminal 17 amino acids of Apg7 play a specific role in Apg8 lipidation indispensable for the Cvt pathway and autophagy.
- Published
- 2003
- Full Text
- View/download PDF
27. GATE-16 and GABARAP are authentic modifiers mediated by Apg7 and Apg3
- Author
-
Takashi Ueno, Masaaki Komatsu, Isei Tanida, and Eiki Kominami
- Subjects
Recombinant Fusion Proteins ,GABARAP ,Biophysics ,Autophagy-Related Proteins ,Lipid-anchored protein ,CHO Cells ,Plasma protein binding ,Ubiquitin-conjugating enzyme ,Biochemistry ,Cell Line ,Ligases ,Cell membrane ,Cricetinae ,medicine ,Animals ,Humans ,Binding site ,Molecular Biology ,Adaptor Proteins, Signal Transducing ,Oligopeptide ,Binding Sites ,Chemistry ,Cell Membrane ,Microfilament Proteins ,Autophagy-Related Protein 8 Family ,Cell Biology ,ULK1 ,Cell Compartmentation ,medicine.anatomical_structure ,Ubiquitin-Conjugating Enzymes ,Apoptosis Regulatory Proteins ,Carrier Proteins ,Oxidoreductases ,Peptides ,Microtubule-Associated Proteins ,Oligopeptides ,Protein Binding - Abstract
GATE-16, GABARAP, and LC3 are three mammalian counterparts of yeast Apg8p/Aut7p. Here, we show that GATE-16 and GABARAP are authentic modifiers, as is the case of LC3 modification. The C-terminal Phe(117) of proGATE-16 and the C-terminal Leu(117) of proGABARAP are post-translationally cleaved to expose an essential Gly(116) within GATE-16 and GABARAP, with the products designated GATE-16-I and GABARAP-I, respectively. The Gly(116) within GATE-16 and GABARAP are essential for further formation of the intermediates between them and Apg7p(C572S) and Apg3p(C264S). When Apg7p and Apg3p are expressed, GATE-16-I and GABARAP-I are modified to a secondary ubiquitin-like modified form, GATE-16-II and GABARAP-II, respectively. GATE-16-I and GABARAP-I, but not LC3-I, localize to membrane compartments before their modification. These results indicate that GATE-16 and GABARAP are authentic modifiers, but that they have different biochemical characteristics from those of LC3.
- Published
- 2003
- Full Text
- View/download PDF
28. Murine Apg12p Has a Substrate Preference for Murine Apg7p over Three Apg8p Homologs
- Author
-
Harumi Yamazaki, Isei Tanida, Emiko Tanida-Miyake, Eiki Kominami, Masaaki Komatsu, Takashi Ueno, and Tomohito Nishitani
- Subjects
Male ,Saccharomyces cerevisiae Proteins ,Ubiquitin-Protein Ligases ,Molecular Sequence Data ,Biophysics ,Biology ,Autophagy-Related Protein 7 ,Biochemistry ,Homology (biology) ,Cell Line ,Substrate Specificity ,Fungal Proteins ,Ligases ,Mice ,Complementary DNA ,Animals ,Humans ,Tissue Distribution ,Amino Acid Sequence ,RNA, Messenger ,Cloning, Molecular ,Rats, Wistar ,Molecular Biology ,Peptide sequence ,chemistry.chemical_classification ,Messenger RNA ,Sequence Homology, Amino Acid ,cDNA library ,Proteins ,Autophagy-Related Protein 8 Family ,Cell Biology ,Yeast ,Rats ,Enzyme ,chemistry ,Mutation ,Oxidoreductases ,Microtubule-Associated Proteins ,Autophagy-Related Protein 12 ,Cysteine - Abstract
Apg7p is a unique E1 enzyme which is essential for both the Apg12p- and Apg8p-modification systems, and plays indispensable roles in yeast autophagy. A cDNA encoding murine Apg7p homolog (mApg7p) was isolated from a mouse brain cDNA library. The predicted amino acid sequence of the clone shows a significant homology to human Apg7p and yeast Apg7p. Murine Apg12p as well as the three mammalian Apg8p homologs co-immunoprecipitate with mApg7p. Site-directed mutagenesis revealed that an active-site cysteine within mApg7p is Cys567, indicating that mApg7p is an authentic E1 enzyme for murine Apg12p and mammalian Apg8p homologs. The mutagenesis study also revealed that Apg12p has a substrate preference for mApg7p over the three Apg8p homologs, suggesting that the Apg12p conjugation by Apg7p occurs preferentially in mammalian cells compared with the modification of the three Apg8p homologs. We also report here on the ubiquitous expression of human APG7 mRNA in human adult and fetal tissues and of rat Apg7p in adult tissues.
- Published
- 2002
- Full Text
- View/download PDF
29. A Lysosomal Proteinase, the Late Infantile Neuronal Ceroid Lipofuscinosis Gene (CLN2) Product, Is Essential for Degradation of a Hydrophobic Protein, the Subunit c of ATP Synthase
- Author
-
Isei Tanida, Junji Ezaki, Nobuo Kanehagi, and Eiki Kominami
- Subjects
DNA, Complementary ,Transcription, Genetic ,Macromolecular Substances ,Protein subunit ,Aminopeptidases ,Biochemistry ,Gene Expression Regulation, Enzymologic ,Cathepsin B ,Cell Line ,Gene product ,Cellular and Molecular Neuroscience ,Neuronal Ceroid-Lipofuscinoses ,Reference Values ,Endopeptidases ,medicine ,Humans ,RNA, Messenger ,Dipeptidyl-Peptidases and Tripeptidyl-Peptidases ,Skin ,Cathepsin ,Tripeptidyl-Peptidase 1 ,ATP synthase ,biology ,Genetic Carrier Screening ,Fibroblasts ,Tripeptidyl peptidase I ,medicine.disease ,Molecular biology ,Mitochondria ,Kinetics ,Proton-Translocating ATPases ,biology.protein ,Neuronal ceroid lipofuscinosis ,Serine Proteases ,Lysosomes ,ATP synthase alpha/beta subunits ,Peptide Hydrolases - Abstract
The specific accumulation of the hydrophobic protein, subunit c of ATP synthase, in lysosomes from the cells of patients with the late infantile form of neuronal ceroid lipofuscinosis (LINCL) is caused by lysosomal proteolytic dysfunction. The defective gene in LINCL (CLN2 gene) has been identified recently. To elucidate the mechanism of lysosomal storage of subunit c, antibodies against the human CLN2 gene product (Cln2p) were prepared. Immunoblot analysis indicated that Cln2p is a 46-kDa protein in normal control skin fibroblasts and carrier heterozygote cells, whereas it was absent in cells from four patients with LINCL. RT-PCR analysis indicated the presence of mRNA for CLN2 in cells from the four different patients tested, suggesting a low efficiency of translation of mRNA or the production of the unstable translation products in these patient cells. Pulse-chase analysis showed that Cln2p was synthesized as a 67-kDa precursor and processed to a 46-kDa mature protein (t(1/2) = 1 h). Subcellular fractionation analysis indicated that Cln2p is localized with cathepsin B in the high-density lysosomal fractions. Confocal immunomicroscopic analysis also revealed that Cln2p is colocalized with a lysosomal soluble marker, cathepsin D. The immunodepletion of Cln2p from normal fibroblast extracts caused a loss in the degradative capacity of subunit c, but not the beta subunit of ATP synthase, suggesting that the absence of Cln2p provokes the lysosomal accumulation of subunit c.
- Published
- 2002
- Full Text
- View/download PDF
30. The C-terminal Region of an Apg7p/Cvt2p Is Required for Homodimerization and Is Essential for Its E1 Activity and E1-E2 Complex Formation
- Author
-
Masaaki Komatsu, Takashi Ueno, Isei Tanida, Yoshinori Ohsumi, Eiki Kominami, and Mariko Ohsumi
- Subjects
Cytoplasm ,Saccharomyces cerevisiae Proteins ,Stereochemistry ,Ubiquitin-Protein Ligases ,Immunoblotting ,Molecular Sequence Data ,Saccharomyces cerevisiae ,Ubiquitin-conjugating enzyme ,Biology ,Autophagy-Related Protein 7 ,Models, Biological ,Biochemistry ,Fungal Proteins ,Ligases ,chemistry.chemical_compound ,Protein structure ,Two-Hybrid System Techniques ,Centrifugation, Density Gradient ,Escherichia coli ,Amino Acid Sequence ,Cysteine ,Amino Acids ,Molecular Biology ,Peptide sequence ,Cysteine metabolism ,chemistry.chemical_classification ,Binding Sites ,Models, Genetic ,Sequence Homology, Amino Acid ,Phosphatidylethanolamines ,Cell Biology ,Precipitin Tests ,Protein Structure, Tertiary ,Amino acid ,Cross-Linking Reagents ,chemistry ,Ubiquitin-Conjugating Enzymes ,Dimerization ,Gene Deletion ,Plasmids ,Protein Binding ,Binding domain - Abstract
Apg7p/Cvt2p, a protein-activating enzyme, is essential for both the Apg12p-Apg5p conjugation system and the Apg8p membrane targeting in autophagy and cytoplasm-to-vacuole targeting in the yeast Saccharomyces cerevisiae. Similar to the ubiquitin-conjugating system, both Apg12p and Apg8p are activated by Apg7p, an E1-like enzyme. Apg12p is then transferred to Apg10p, an E2-like enzyme, and conjugated with Apg5p, whereas Apg8p is transferred to Apg3p, another E2-like enzyme, followed by conjugation with phosphatidylethanolamine. Evidence is presented here that Apg7p forms a homodimer with two active-site cysteine residues via the C-terminal region. The dimerization of Apg7p is independent of the other Apg proteins and facilitated by overexpressed Apg12p. The C-terminal 123 amino acids of Apg7p (residues 508 to 630 out of 630 amino acids) are sufficient for its dimerization, where there is neither an ATP binding domain nor an active-site cysteine essential for its E1 activity. The deletion of its carboxyl 40 amino acids (residues 591-630 out of 630 amino acids) results in several defects of not only Apg7p dimerization but also interactions with two substrates, Apg12p and Apg8p and Apg12p-Apg5p conjugation, whereas the mutant Apg7p contains both an ATP binding domain and an active-site cysteine. Furthermore, the carboxyl 40 amino acids of Apg7p are also essential for the interaction of Apg7p with Apg3p to form the E1-E2 complex for Apg8p. These results suggest that Apg7p forms a homodimer via the C-terminal region and that the C-terminal region is essential for both the activity of the E1 enzyme for Apg12p and Apg8p as well as the formation of an E1-E2 complex for Apg8p.
- Published
- 2001
- Full Text
- View/download PDF
31. The Human Homolog of Saccharomyces cerevisiae Apg7p Is a Protein-activating Enzyme for Multiple Substrates Including Human Apg12p, GATE-16, GABARAP, and MAP-LC3
- Author
-
Emiko Tanida-Miyake, Takashi Ueno, Eiki Kominami, and Isei Tanida
- Subjects
Male ,Autophagosome ,Autophagy-Related Protein 8 Family ,Saccharomyces cerevisiae Proteins ,GABARAP ,Molecular Sequence Data ,Mutant ,Saccharomyces cerevisiae ,Vacuole ,Biology ,Autophagy-Related Protein 7 ,Biochemistry ,Substrate Specificity ,Fungal Proteins ,Animals ,Humans ,Amino Acid Sequence ,Rats, Wistar ,Molecular Biology ,Adaptor Proteins, Signal Transducing ,DNA Primers ,Base Sequence ,Sequence Homology, Amino Acid ,Microfilament Proteins ,Autophagy ,Proteins ,Cell Biology ,biology.organism_classification ,Rats ,Cell biology ,Mutagenesis, Site-Directed ,Apoptosis Regulatory Proteins ,Carrier Proteins ,Microtubule-Associated Proteins - Abstract
Autophagy is a process that involves the bulk degradation of cytoplasmic components by the lysosomal/vacuolar system. In the yeast, Saccharomyces cerevisiae, an autophagosome is formed in the cytosol. The outer membrane of the autophagosome is fused with the vacuole, releasing the inner membrane structure, an autophagic body, into the vacuole. The autophagic body is subsequently degraded by vacuolar hydrolases. Taking advantage of yeast genetics, apg (autophagy-defective) mutants were isolated that are defective in terms of formation of autophagic bodies under nutrient starvation conditions. One of the APG gene products, Apg12p, is covalently attached to Apg5p via the C-terminal Gly of Apg12p as in the case of ubiquitylation, and this conjugation is essential for autophagy. Apg7p is a novel E1 enzyme essential for the Apg12p-conjugation system. In mammalian cells, the human Apg12p homolog (hApg12p) also conjugates with the human Apg5p homolog. In this study, the unique characteristics of hApg7p are shown. A two-hybrid experiment indicated that hApg12p interacts with hApg7p. Site-directed mutagenesis revealed that Cys(572) of hApg7p is an authentic active site cysteine residue essential for the formation of the hApg7p.hApg12p intermediate. Overexpression of hApg7p enhances the formation of the hApg5p.hApg12p conjugate, indicating that hApg7p is an E1-like enzyme essential for the hApg12p conjugation system. Cross-linking experiments and glycerol-gradient centrifugation analysis showed that the mammalian Apg7p homolog forms a homodimer as in yeast Apg7p. Each of three human Apg8p counterparts, i.e. the Golgi-associated ATPase enhancer of 16 kDa, GABA(A) receptor-associated protein, and microtubule-associated protein light chain 3, coimmunoprecipitates with hApg7p and conjugates with mutant hApg7p(C572S) to form a stable intermediate via an ester bond. These results indicate that hApg7p is an authentic protein-activating enzyme for hApg12p and the three Apg8p homologs.
- Published
- 2001
- Full Text
- View/download PDF
32. Autolysosomal Membrane-associated Betaine Homocysteine Methyltransferase
- Author
-
Motoni Kadowaki, Kazumi Ishidoh, Takashi Ueno, Reiko Mineki, Isei Tanida, Kimie Murayama, and Eiki Kominami
- Subjects
chemistry.chemical_classification ,biology ,Endosome ,Endoplasmic reticulum ,Peptide ,Cell Biology ,Golgi apparatus ,Biochemistry ,Cytosol ,symbols.namesake ,medicine.anatomical_structure ,Membrane protein ,chemistry ,Hepatocyte ,biology.protein ,medicine ,symbols ,Molecular Biology ,Calreticulin - Abstract
We compared the membrane proteins of autolysosomes isolated from leupeptin-administered rat liver with those of lysosomes. In addition to many polypeptides common to the two membranes, the autolysosomal membranes were found to be more enriched in endoplasmic reticulum lumenal proteins (protein-disulfide isomerase, calreticulin, ER60, BiP) and endosome/Golgi markers (cation-independent mannose 6-phosphate receptor, transferrin receptor, Golgi 58-kDa protein) than lysosomal membranes. The autolysosomal membrane proteins include three polypeptides (44, 35, and 32 kDa) whose amino-terminal sequences have not yet been reported. Combining immunoblotting and reverse transcriptase-polymerase chain reaction analyses, we identified the 44-kDa peptide as the intact subunit of betaine homocysteine methyltransferase and the 35- and 32-kDa peptides as two proteolytic fragments. Pronase digestion of autolysosomes revealed that the 44-kDa and 32-kDa peptides are present in the lumen, whereas the 35-kDa peptide is not. In primary hepatocyte cultures, the starvation-induced accumulation of the 32-kDa peptide occurs in the presence of E64d, showing that the 32-kDa peptide is formed from the sequestered 44-kDa peptide during autophagy. The accumulation is induced by rapamycin but completely inhibited by wortmannin, 3-methyladenine, and bafilomycin. Thus, detection of the 32-kDa peptide by immunoblotting can be used as a streamlined assay for monitoring autophagy.
- Published
- 1999
- Full Text
- View/download PDF
33. Apg7p/Cvt2p: A novel protein-activating enzyme essential for autophagy
- Author
-
Takashi Ueno, Isei Tanida, Noboru Mizushima, Mariko Ohsumi, Yoshinori Ohsumi, Miho Kiyooka, and Eiki Kominami
- Subjects
Autophagy-Related Protein 8 Family ,Cytoplasm ,Saccharomyces cerevisiae Proteins ,Ubiquitin-Protein Ligases ,Saccharomyces cerevisiae ,Molecular Sequence Data ,Biology ,Aminopeptidases ,Autophagy-Related Protein 7 ,Article ,Autophagy-Related Protein 5 ,Fungal Proteins ,Adenosine Triphosphate ,Cytosol ,Autophagy ,Amino Acid Sequence ,Cysteine ,Binding site ,Molecular Biology ,Cytoplasm-to-vacuole targeting ,Binding Sites ,Base Sequence ,Proteins ,Cell Biology ,biology.organism_classification ,Precipitin Tests ,Yeast ,Biochemistry ,Vacuoles ,Conjugate - Abstract
In the yeast Saccharomyces cerevisiae, the Apg12p–Apg5p conjugating system is essential for autophagy. Apg7p is required for the conjugation reaction, because Apg12p is unable to form a conjugate with Apg5p in the apg7/cvt2mutant. Apg7p shows a significant similarity to a ubiquitin-activating enzyme, Uba1p. In this article, we investigated the function of Apg7p as an Apg12p-activating enzyme. Hemagglutinin-tagged Apg12p was coimmunoprecipitated with c-myc–tagged Apg7p. A two-hybrid experiment confirmed the interaction. The coimmunoprecipitation was sensitive to a thiol-reducing reagent. Furthermore, a thioester conjugate of Apg7p was detected in a lysate of cells overexpressing both Apg7p and Apg12p. These results indicated that Apg12p interacts with Apg7p via a thioester bond. Mutational analyses of Apg7p suggested that Cys507of Apg7p is an active site cysteine and that both the ATP-binding domain and the cysteine residue are essential for the conjugation of Apg7p with Apg12p to form the Apg12p–Apg5p conjugate. Cells expressing mutant Apg7ps, Apg7pG333A, or Apg7pC507Ashowed defects in autophagy and cytoplasm-to-vacuole targeting of aminopeptidase I. These results indicated that Apg7p functions as a novel protein-activating enzyme necessary for Apg12p–Apg5p conjugation.
- Published
- 1999
34. Yeast Cls2p/Csg2p localized on the endoplasmic reticulum membrane regulates a non-exchangeable intracellular Ca2+pool cooperatively with calcineurin
- Author
-
Isei Tanida, Yasuhiro Anraku, Yoshikazu Ohya, Akira Hasegawa, and Yoko Takita
- Subjects
CLS2 ,Intracellular Fluid ,Saccharomyces cerevisiae Proteins ,vma mutant ,FK506 ,Biophysics ,Saccharomyces cerevisiae ,Vacuole ,Biology ,Endoplasmic Reticulum ,Models, Biological ,Biochemistry ,Tacrolimus ,Fungal Proteins ,Structural Biology ,Cyclosporin a ,Calcium homeostasis ,Phosphoprotein Phosphatases ,Genetics ,Extracellular ,Molecular Biology ,Calcineurin ,Endoplasmic reticulum ,Calcium-Binding Proteins ,STIM1 ,Cell Biology ,Cell Compartmentation ,Cell biology ,FKBP ,Mutation ,Calcium ,Calmodulin-Binding Proteins ,Immunosuppressive Agents ,Intracellular - Abstract
Saccharromyces cerevisiae CLS2 gene product (Cls2p) that is localized on the endoplasmic reticulum is important for the regulation of intracellular Ca2+ in a compartment distinct from the vacuole. Using a vma3 mutation that impairs the Ca2+ sequestering activity into the vocuole, we have shown that the cls2 mutation results in 3.4-fold increase in the Ca2+ pool that is not exchangeable with extracellular Ca2+. Accumulation of Ca2+ within the cls2 cells is synergistically elevated by the addition of immunosuppressant, FK506. Moreover, in the vma3 background, toxicity caused by the cls2 mutation is greatly enhanced by FK506. Given that FK506 inhibits the calcineurin activity, Cls2p likely functions in releasing Ca2+ flux from the endoplasmic reticulum, somehow cooperating with calcineurin.
- Published
- 1996
- Full Text
- View/download PDF
35. MAP‐LC3, a promising autophagosomal marker, is processed during the differentiation and recovery of podocytes from PAN nephrosis
- Author
-
Isao Shirato, Eiki Kominami, Tomohito Nishitani, Isei Tanida, Yasuhiko Tomino, Katsuhiko Asanuma, Takashi Ueno, and Hisatsugu Takahara
- Subjects
Endosome ,Nephrosis ,Cellular differentiation ,Vacuole ,Puromycin Aminonucleoside ,Biology ,Kidney ,Models, Biological ,Biochemistry ,Podocyte ,Mice ,chemistry.chemical_compound ,Phagosomes ,Lysosome ,Autophagy ,Genetics ,medicine ,Animals ,Molecular Biology ,Kidney metabolism ,Cell Differentiation ,medicine.disease ,Clone Cells ,Rats ,Cell biology ,medicine.anatomical_structure ,chemistry ,Puromycin ,Vacuoles ,embryonic structures ,biological phenomena, cell phenomena, and immunity ,Microtubule-Associated Proteins ,Protein Processing, Post-Translational ,Biomarkers ,Biotechnology - Abstract
Microtubule-associated protein 1 light chain 3 (LC3) is a unique modifier protein. LC3-I, the cytosolic form, is modified to LC3-II, the membrane-bound form, by a mechanism similar to ubiquitylation by E1- and E2-like enzymes, Apg7p and Apg3p, respectively. In the present study, we found that LC3-I is processed to LC3-II during the differentiation and recovery from puromycin aminonucleoside-induced nephrosis of podocytes. LC3 is especially expressed in the podocytes of rat kidney as the membrane-bound form LC3-II. Biochemical analysis using a conditionally immortalized mouse podocyte clone (MPC) revealed that LC3-I is processed to LC3-II during the differentiation of cells into mature podocytes and accumulates in the membrane-rich fraction of the cell lysate. LC3-II-localized vesicles, which differ from lysosomes and endosomes, in differentiated MPC cells are morphologically similar to autophagic vacuoles during starvation-induced autophagy. During starvation-induced autophagy, autophagosomes fuses with lysosome and LC3-II on autophagosomes is finally degraded by lysosomal proteases. However, in differentiated MPC cells, little LC3-II on the vesicles is degraded by lysosomal proteases, suggesting that little LC3-II-localized vesicles in differentiated MPC cells fuse with lysosome. Furthermore, the LC3-II level in differentiated MPC cells increases with recovery from damage caused by experimental puromycin aminonucleoside-induced nephrosis. These results suggest that LC3-II-localized vesicles play an important role in the physiological function of podocytes.
- Published
- 2003
- Full Text
- View/download PDF
36. High-level expression of the trucated alpha chain of Human high-affinity receptor for IgE as a soluble form by baculovirus-infected insect cells. Biochemical characterization of the recombinant product
- Author
-
K Okumura, A. Hasegawa, Chisei Ra, S Yagi, Isei Tanida, and M Yanagida
- Subjects
Glycosylation ,animal structures ,Macromolecular Substances ,Blotting, Western ,Genetic Vectors ,Molecular Sequence Data ,Alpha (ethology) ,Moths ,Transfection ,Peptide Mapping ,Polymerase Chain Reaction ,Biochemistry ,Cell Line ,law.invention ,Affinity chromatography ,law ,Animals ,Humans ,Amino Acid Sequence ,Asparagine ,Peptide sequence ,Molecular mass ,Receptors, IgE ,Chemistry ,Immunoglobulin E ,Molecular biology ,Recombinant Proteins ,Molecular Weight ,Kinetics ,Cell culture ,Chromatography, Gel ,Recombinant DNA ,Electrophoresis, Polyacrylamide Gel ,Baculoviridae ,Protein Processing, Post-Translational ,Alpha chain - Abstract
The binding subunit of human high-affinity receptor for IgE (Fc epsilon RI alpha) was efficiently expressed as a truncated form in insect cells. The soluble (s)Fc epsilon RI alpha purified from culture medium by affinity chromatography with an anti-(alpha chain) mAb was nearly homogeneous and had an IgE-binding activity. The amino acid composition and the revealed N-terminal amino acid sequence of sFc epsilon RI alpha suggested that it was properly processed in insect cells. The apparent molecular mass (35 kDa) of purified sFc epsilon RI alpha was smaller than that of sFc epsilon RI alpha produced by CHO transfectants. The reduction of the apparent molecular mass after N-glycanase treatment showed the recombinant product was N-glycosylated. Peptide mapping of native and deglycosylated sFc epsilon RI alpha indicated that three Asn residues (Asn21, Asn42 and Asn166) should be almost fully glycosylated, and that two Asn residues (Asn74 and Asn135) were partially glycosylated.
- Published
- 1994
- Full Text
- View/download PDF
37. Liver autophagy contributes to the maintenance of blood glucose and amino acid levels
- Author
-
Norihiro Tada, Takashi Ueno, Hikari Taka, Yuka Hiraoka, Katsuyuki Takahashi, Tsutomu Fujimura, Dong Mei Zheng, Junji Ezaki, Kenji Takehana, Junichi Iwata, Mitsue Takeda-Ezaki, Mitsutaka Yoshida, Masaaki Komatsu, Isei Tanida, Norihiko Furuya, Naomi Matsumoto, Keiji Tanaka, and Eiki Kominami
- Subjects
Blood Glucose ,medicine.medical_specialty ,Proteolysis ,medicine.medical_treatment ,Biology ,Glucagon ,Mice ,Internal medicine ,medicine ,Autophagy ,Animals ,Insulin ,Amino Acids ,Muscle, Skeletal ,Molecular Biology ,Triglycerides ,chemistry.chemical_classification ,medicine.diagnostic_test ,Catabolism ,Fatty Acids ,Gluconeogenesis ,Cell Biology ,Fasting ,Basic Research Paper ,Amino acid ,Mice, Inbred C57BL ,Endocrinology ,chemistry ,Liver ,Starvation ,Vacuoles ,Blood sugar regulation ,Microtubule-Associated Proteins - Abstract
Both anabolism and catabolism of the amino acids released by starvation-induced autophagy are essential for cell survival, but their actual metabolic contributions in adult animals are poorly understood. Herein, we report that, in mice, liver autophagy makes a significant contribution to the maintenance of blood glucose by converting amino acids to glucose via gluconeogenesis. Under a synchronous fasting-initiation regimen, autophagy was induced concomitantly with a fall in plasma insulin in the presence of stable glucagon levels, resulting in a robust amino acid release. In liver-specific autophagy (Atg7)-deficient mice, no amino acid release occurred and blood glucose levels continued to decrease in contrast to those of wild-type mice. Administration of serine (30 mg/animal) exerted a comparable effect, raising the blood glucose levels in both control wild-type and mutant mice under starvation. Thus, the absence of the amino acids that were released by autophagic proteolysis is a major reason for a decrease in blood glucose. Autophagic amino acid release in control wild-type livers was significantly suppressed by the prior administration of glucose, which elicited a prompt increase in plasma insulin levels. This indicates that insulin plays a dominant role over glucagon in controlling liver autophagy. These results are the first to show that liver-specific autophagy plays a role in blood glucose regulation.
- Published
- 2011
38. Caffeine induces apoptosis by enhancement of autophagy via PI3K/Akt/mTOR/p70S6K inhibition
- Author
-
Shigeto Sato, Hiroki Kobayashi, Sumihiro Kawajiri, Takahiro Fujimaki, Yoko Imamichi, Shinji Saiki, Isei Tanida, Masaya Imoto, Fumiaki Sato, Nobutaka Hattori, Yukiko Sasazawa, and Kei-Ichi Ishikawa
- Subjects
Programmed cell death ,P70-S6 Kinase 1 ,Apoptosis ,Biology ,Membrane Fusion ,chemistry.chemical_compound ,Mice ,Phosphatidylinositol 3-Kinases ,Caffeine ,Cell Line, Tumor ,Phagosomes ,Autophagy ,Animals ,Humans ,Propidium iodide ,Molecular Biology ,Protein kinase B ,PI3K/AKT/mTOR pathway ,Phosphoinositide-3 Kinase Inhibitors ,Sirolimus ,TOR Serine-Threonine Kinases ,Ribosomal Protein S6 Kinases, 70-kDa ,Cell Biology ,Basic Research Paper ,Cell biology ,Enzyme Activation ,chemistry ,Ribosomal protein s6 ,Lysosomes ,Proto-Oncogene Proteins c-akt ,Signal Transduction - Abstract
Caffeine is one of the most frequently ingested neuroactive compounds. All known mechanisms of apoptosis induced by caffeine act through cell cycle modulation or p53 induction. It is currently unknown whether caffeine-induced apoptosis is associated with other cell death mechanisms, such as autophagy. Herein we show that caffeine increases both the levels of microtubule-associated protein 1 light chain 3-II and the number of autophagosomes, through the use of western blotting, electron microscopy and immunocytochemistry techniques. Phosphorylated p70 ribosomal protein S6 kinase (Thr389), S6 ribosomal protein (Ser235/236), 4E-BP1 (Thr37/46) and Akt (Ser473) were significantly decreased by caffeine. In contrast, ERK1/2 (Thr202/204) was increased by caffeine, suggesting an inhibition of the Akt/mTOR/p70S6K pathway and activation of the ERK1/2 pathway. Although insulin treatment phosphorylated Akt (Ser473) and led to autophagy suppression, the effect of insulin treatment was completely abolished by caffeine addition. Caffeine-induced autophagy was not completely blocked by inhibition of ERK1/2 by U0126. Caffeine induced reduction of mitochondrial membrane potentials and apoptosis in a dose-dependent manner, which was further attenuated by the inhibition of autophagy with 3-methyladenine or Atg7 siRNA knockdown. Furthermore, there was a reduced number of early apoptotic cells (annexin V positive, propidium iodide negative) among autophagy-deficient mouse embryonic fibroblasts treated with caffeine than in their wild-type counterparts. These results support previous studies on the use of caffeine in the treatment of human tumors and indicate a potential new target in the regulation of apoptosis.
- Published
- 2011
39. Loss of Pten, a tumor suppressor, causes the strong inhibition of autophagy without affecting LC3 lipidation
- Author
-
Isei Tanida, Sumio Watanabe, Wataru Sato, Masaaki Komatsu, Tak W. Mak, Yasuo Horie, Shigetoshi Ohshima, Mitsutaka Yoshida, Takashi Ueno, and Eiki Kominami
- Subjects
Cell signaling ,Mice, Transgenic ,Vacuole ,Mice ,Downregulation and upregulation ,Phagosomes ,Autophagy ,Tensin ,PTEN ,Animals ,Insulin ,Genes, Tumor Suppressor ,Molecular Biology ,PI3K/AKT/mTOR pathway ,Cells, Cultured ,biology ,Akt/PKB signaling pathway ,PTEN Phosphohydrolase ,Cell Biology ,Lipid Metabolism ,Cell biology ,Mice, Inbred C57BL ,Starvation ,biology.protein ,Hepatocytes ,Apoptosis Regulatory Proteins ,Microtubule-Associated Proteins ,Signal Transduction - Abstract
(1)Pten (phosphatase and tensin homolog deleted on chromosome ten), a tumor suppressor, is a phosphatase with a variety of substrate specificities. Its function as a negative regulator of the class I phosphatidyl-inositol 3-kinase/Akt pathway antagonizes insulin-dependent cell signaling. The targeted deletion of Pten in mouse liver leads to insulin hypersensitivity and the upregulation of the phosphatidyl-inositol 3-kinase/Akt signaling pathway. In this study, we investigated the effects of Pten deficiency on autophagy, a major cellular degradative system responsible for the turnover of cell constituents. The autophagic degradation of [(14)C-leucine-labeled proteins of hepatocytes isolated from Pten-deficient livers was strongly inhibited, compared with that of control hepatocytes. However, no significant difference was found in the levels of the Atg12-Atg5 conjugate and LC3-II, the lipidated form of LC3, an intrinsic autophagosomal membrane marker, between control and Pten-deficient livers. Electron microscopic analyses showed that numerous autophagic vacuoles (autophagosomes plus autolysosomes) were present in the livers of control mice that had been starved for 48 hours, whereas they were markedly reduced in Pten-deficient livers under the same conditions. In vivo administration of leupeptin to control livers caused the inhibition of autophagic proteolysis, resulting in the accumulation of autolysosomes. These autolysosomes could be separated as a denser autolysosomal fraction from other cell membranes by Percoll density gradient centrifugation. In leupeptin-administered mutant livers, however, the accumulation of denser autolysosomes was reduced substantially. Collectively, we conclude that enhanced insulin signaling in Pten deficiency suppresses autophagy at the formation and maturation steps of autophagosomes, without inhibiting ATG conjugation reactions.
- Published
- 2008
40. ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation
- Author
-
Atushi Isoai, Takashi Ueno, Hiromichi Kumagai, Eriko Fujita, Isei Tanida, Randal J. Kaufman, Eiki Kominami, Takashi Momoi, Satoshi Ogawa, and Yoriko Kouroku
- Subjects
Programmed cell death ,ATG5 ,Eukaryotic Initiation Factor-2 ,Biology ,BAG3 ,Endoplasmic Reticulum ,Models, Biological ,Autophagy-Related Protein 5 ,ATG12 ,Mice ,eIF-2 Kinase ,Leucine ,Pepstatins ,Autophagy ,Animals ,RNA, Messenger ,Phosphorylation ,Protein Structure, Quaternary ,Molecular Biology ,Caspase 12 ,Sirolimus ,Cell Death ,Endoplasmic reticulum ,Adenine ,Cell Biology ,Molecular biology ,Cell biology ,Enzyme Activation ,Gene Expression Regulation ,Unfolded protein response ,biological phenomena, cell phenomena, and immunity ,Lysosomes ,Peptides ,Microtubule-Associated Proteins - Abstract
Expanded polyglutamine 72 repeat (polyQ72) aggregates induce endoplasmic reticulum (ER) stress-mediated cell death with caspase-12 activation and vesicular formation (autophagy). We examined this relationship and the molecular mechanism of autophagy formation. Rapamycin, a stimulator of autophagy, inhibited the polyQ72-induced cell death with caspase-12 activation. PolyQ72, but not polyQ11, stimulated Atg5-Atg12-Atg16 complex-dependent microtubule-associated protein 1 (MAP1) light chain 3 (LC3) conversion from LC3-I to -II, which plays a key role in autophagy. The eucaryotic translation initiation factor 2 alpha (eIF2alpha) A/A mutation, a knock-in to replace a phosphorylatable Ser51 with Ala51, and dominant-negative PERK inhibited polyQ72-induced LC3 conversion. PolyQ72 as well as ER stress stimulators upregulated Atg12 mRNA and proteins via eIF2alpha phosphorylation. Furthermore, Atg5 deficiency as well as the eIF2alpha A/A mutation increased the number of cells showing polyQ72 aggregates and polyQ72-induced caspase-12 activation. Thus, autophagy formation is a cellular defense mechanism against polyQ72-induced ER-stress-mediated cell death by degrading polyQ72 aggregates, with PERK/eIF2alpha phosphorylation being involved in polyQ72-induced LC3 conversion.
- Published
- 2006
41. The crystal structure of human Atg4b, a processing and de-conjugating enzyme for autophagosome-forming modifiers
- Author
-
Isei Tanida, Takashi Ueno, Atsuo Suzuki, Yu-shin Sou, Tsunehiro Mizushima, Masaaki Komatsu, Keiji Tanaka, Taichi Kumanomidou, Eiki Kominami, and Takashi Yamane
- Subjects
Autophagosome ,Models, Molecular ,Proteases ,medicine.medical_treatment ,ATG8 ,GABARAP ,Autophagy-Related Proteins ,Biology ,Crystallography, X-Ray ,Catalysis ,Substrate Specificity ,Structural Biology ,Catalytic triad ,medicine ,Autophagy ,Humans ,Protein Precursors ,Molecular Biology ,Protease ,Binding Sites ,Cysteine protease ,Protein tertiary structure ,Protein Structure, Tertiary ,Cysteine Endopeptidases ,Biochemistry ,Structural Homology, Protein ,Protein Processing, Post-Translational ,Protein Binding - Abstract
Autophagy is an evolutionarily conserved pathway in which the cytoplasm and organelles are engulfed within double-membrane vesicles, termed autophagosomes, for the turnover and recycling of these cellular constituents. The yeast Atg8 and its human orthologs, such as LC3 and GABARAP, have a unique feature as they conjugate covalently to phospholipids, differing from ubiquitin and other ubiquitin-like modifiers that attach only to protein substrates. The lipidated Atg8 and LC3 localize to autophagosomal membranes and play indispensable roles for maturation of autophagosomes. Upon completion of autophagosome formation, some populations of lipidated Atg8 and LC3 are delipidated for recycling. Atg4b, a specific protease for LC3 and GABARAP, catalyzes the processing reaction of LC3 and GABARAP precursors to mature forms and de-conjugating reaction of the modifiers from phospholipids. Atg4b is a unique enzyme whose primary structure differs from that of any other proteases that function as processing and/or de-conjugating enzymes of ubiquitin and ubiquitin-like modifiers. However, the tertiary structures of the substrates considerably resemble that of ubiquitin except for the N-terminal additional domain. Here we determined the crystal structure of human Atg4b by X-ray crystallography at 2.0 A resolution, and show that Atg4b is a cysteine protease whose active catalytic triad site consists of Cys74, His280 and Asp278. The structure is comprised of a left lobe and a small right lobe, designated the "protease domain" and the "auxiliary domain", respectively. Whereas the protease domain structure of Atg4b matches that of papain superfamily cysteine proteinases, the auxiliary domain contains a unique structure with yet-unknown function. We propose that the R229 and W142 residues in Atg4b are specifically essential for recognition of substrates and catalysis of both precursor processing and de-conjugation of phospholipids.
- Published
- 2005
42. Solution structure of microtubule-associated protein light chain 3 and identification of its functional subdomains
- Author
-
Hiroyuki Shinoda, Eiki Kominami, Takahide Kouno, Takashi Ueno, Takashi Kanematsu, Yoshihiro Mori, Mineyuki Mizuguchi, Keiichi Kawano, Masato Hirata, and Isei Tanida
- Subjects
Autophagosome ,Models, Molecular ,Magnetic Resonance Spectroscopy ,Microtubule-associated protein ,Protein Conformation ,Phosphorylcholine ,Plasma protein binding ,Biology ,Biochemistry ,Microtubules ,Protein structure ,Cytosol ,Phagocytosis ,Microtubule ,Autophagy ,Escherichia coli ,Humans ,Cysteine ,Molecular Biology ,Dose-Response Relationship, Drug ,C-terminus ,Phosphatidylethanolamines ,Signal transducing adaptor protein ,Cell Biology ,Surface Plasmon Resonance ,Recombinant Proteins ,Protein Structure, Tertiary ,Tubulin ,embryonic structures ,Mutation ,biology.protein ,Biophysics ,biological phenomena, cell phenomena, and immunity ,Microtubule-Associated Proteins ,Gene Deletion ,Protein Binding - Abstract
Microtubule-associated protein (MAP) light chain 3 (LC3) is a human homologue of yeast Apg8/Aut7/Cvt5 (Atg8), which is essential for autophagy. MAP-LC3 is cleaved by a cysteine protease to produce LC3-I, which is located in cytosolic fraction. LC3-I, in turn, is converted to LC3-II through the actions of E1- and E2-like enzymes. LC3-II is covalently attached to phosphatidylethanolamine on its C terminus, and it binds tightly to autophagosome membranes. We determined the solution structure of LC3-I and found that it is divided into N- and C-terminal subdomains. Additional analysis using a photochemically induced dynamic nuclear polarization technique also showed that the N-terminal subdomain of LC3-I makes contact with the surface of the C-terminal subdomain and that LC3-I adopts a single compact conformation in solution. Moreover, the addition of dodecylphosphocholine into the LC3-I solution induced chemical shift perturbations primarily in the C-terminal subdomain, which implies that the two subdomains have different sensitivities to dodecylphosphocholine micelles. On the other hand, deletion of the N-terminal subdomain abolished binding of tubulin and microtubules. Thus, we showed that two subdomains of the LC3-I structure have distinct functions, suggesting that MAP-LC3 can act as an adaptor protein between microtubules and autophagosomes.
- Published
- 2005
43. Human light chain 3/MAP1LC3B is cleaved at its carboxyl-terminal Met121 to expose Gly120 for lipidation and targeting to autophagosomal membranes
- Author
-
Takashi Ueno, Isei Tanida, and Eiki Kominami
- Subjects
Saccharomyces cerevisiae Proteins ,ATG8 ,Recombinant Fusion Proteins ,Mutant ,Molecular Sequence Data ,Glycine ,Lipid-anchored protein ,Cleavage (embryo) ,Cell Fractionation ,Biochemistry ,Autophagy-Related Protein 7 ,law.invention ,Cell Line ,Methionine ,Ubiquitin ,law ,Autophagy ,Animals ,Humans ,Amino Acid Sequence ,Molecular Biology ,Phospholipids ,biology ,Cell Biology ,Intracellular Membranes ,In vitro ,Protein Structure, Tertiary ,Recombinant DNA ,biology.protein ,RNA Interference ,Autophagin ,Microtubule-Associated Proteins ,Sequence Alignment ,Subcellular Fractions - Abstract
Human light chain 3/MAP1LC3B, an autophagosomal ortholog of yeast Atg8, is conjugated to phospholipid (PL) via ubiquitylation-like reactions mediated by human Atg7 and Atg3. Since human Atg4B was found to cleave the carboxyl terminus of MAP1LC3B in vitro, we hypothesized that this exposes its carboxyl-terminal Gly(120). It was recently reported, however, that when Myc-MAP1LC3B-His is expressed in HEK293 cells, its carboxyl terminus is not cleaved. (Tanida, I., Sou, Y.-s., Ezaki, J., Minematsu-Ikeguchi, N., Ueno, T., and Kominami, E. (2004) J. Biol. Chem. 279, 36268-36276). To clarify this contradiction, we sought to determine whether the carboxyl terminus of MAP1LC3B is cleaved to expose Gly(120) for further ubiquitylation-like reactions. When MAP1LC3B-3xFLAG and Myc-MAP1LC3B-His were expressed in HEK293 cells, their carboxyl termini were cleaved, whereas there was little cleavage of mutant proteins MAP1LC3B(G120A)-3xFLAG and Myc-MAP1LC3B(G120A)-His, containing Ala in place of Gly(120). An in vitro assay showed that Gly(120) is essential for carboxyl-terminal cleavage by human Atg4B as well as for formation of the intermediates Atg7-MAP1LC3B (ubiquitin-activating enzyme-substrate) and Atg3-MAP1LC3B (ubiquitin carrier protein-substrate). Recombinant MAP1LC3B-PL was fractionated into the 100,000 x g pellet in a manner similar to that shown for endogenous MAP1LC3B-PL. RNA interference of MAP1LC3B mRNA resulted in a decrease in both endogenous MAP1LC3B-PL and MAP1LC3B. These results indicate that the carboxyl terminus of MAP1LC3B is cleaved to expose Gly(120) for further ubiquitylation-like reactions.
- Published
- 2004
44. A novel protein-conjugating system for Ufm1, a ubiquitin-fold modifier
- Author
-
Tohru Natsume, Shun-ichiro Iemura, Takashi Ueno, Isei Tanida, Tomoki Chiba, Masaaki Komatsu, Eiki Kominami, Kanako Tatsumi, Keiji Tanaka, and Noriko Okazaki
- Subjects
DNA, Complementary ,Protein Conformation ,Immunoblotting ,Molecular Sequence Data ,Fluorescent Antibody Technique ,Ubiquitin-Activating Enzymes ,Biology ,Thioester ,Transfection ,General Biochemistry, Genetics and Molecular Biology ,Article ,Mass Spectrometry ,Residue (chemistry) ,Mice ,Ubiquitin ,Animals ,Humans ,Immunoprecipitation ,Amino Acid Sequence ,Molecular Biology ,Ubiquitins ,Cells, Cultured ,DNA Primers ,chemistry.chemical_classification ,General Immunology and Microbiology ,Molecular mass ,General Neuroscience ,Proteins ,Yeast ,Protein tertiary structure ,Enzyme ,chemistry ,Biochemistry ,Ubiquitin-Conjugating Enzymes ,biology.protein ,Target protein ,Protein Processing, Post-Translational ,Sequence Alignment ,Chromatography, Liquid - Abstract
Several studies have addressed the importance of various ubiquitin-like (UBL) post-translational modifiers. These UBLs are covalently linked to most, if not all, target protein(s) through an enzymatic cascade analogous to ubiquitylation, consisting of E1 (activating), E2 (conjugating), and E3 (ligating) enzymes. In this report, we describe the identification of a novel ubiquitin-fold modifier 1 (Ufm1) with a molecular mass of 9.1 kDa, displaying apparently similar tertiary structure, although lacking obvious sequence identity, to ubiquitin. Ufm1 is first cleaved at the C-terminus to expose its conserved Gly residue. This Gly residue is essential for its subsequent conjugating reactions. The C-terminally processed Ufm1 is activated by a novel E1-like enzyme, Uba5, by forming a high-energy thioester bond. Activated Ufm1 is then transferred to its cognate E2-like enzyme, Ufc1, in a similar thioester linkage. Ufm1 forms several complexes in HEK293 cells and mouse tissues, revealing that it conjugates to the target proteins. Ufm1, Uba5, and Ufc1 are all conserved in metazoa and plants but not in yeast, suggesting its potential roles in various multicellular organisms.
- Published
- 2004
45. The mouse APG10 homologue, an E2-like enzyme for Apg12p conjugation, facilitates MAP-LC3 modification
- Author
-
Takashi Ueno, Emiko Tanida-Miyake, Mariko Ohsumi, Takahiro Nemoto, Isei Tanida, Masahiro Yokota, Eiki Kominami, and Naoko Minematsu-Ikeguchi
- Subjects
DNA, Complementary ,Saccharomyces cerevisiae Proteins ,Mutant ,Molecular Sequence Data ,Autophagy-Related Proteins ,Vacuole ,Biology ,In Vitro Techniques ,Biochemistry ,Autophagy-Related Protein 7 ,Models, Biological ,Cell Line ,Gene product ,Ligases ,Mice ,Two-Hybrid System Techniques ,Autophagy ,Animals ,Humans ,Amino Acid Sequence ,Molecular Biology ,chemistry.chemical_classification ,Base Sequence ,Sequence Homology, Amino Acid ,HEK 293 cells ,Proteins ,Cell Biology ,Yeast ,Recombinant Proteins ,Cell biology ,Cytosol ,Enzyme ,chemistry ,embryonic structures ,Ubiquitin-Conjugating Enzymes ,Mutagenesis, Site-Directed ,biological phenomena, cell phenomena, and immunity ,Oxidoreductases ,Microtubule-Associated Proteins ,Autophagy-Related Protein 12 ,Conjugate - Abstract
Autophagy is a process for the bulk degradation of cytosolic compartments by lysosomes/vacuoles. The formation of autophagosomes involves a dynamic rearrangement of the membrane for which two ubiquitin-like modifications (the conjugation of Apg12p and the modification of a soluble form of MAP-LC3 to a membrane-bound form) are essential. In yeast, Apg10p is an E2-like enzyme essential for Apg12p conjugation. The isolated mouse APG10 gene product interacts with mammalian Apg12p dependent on mammalian Apg7p (E1-like enzyme), and facilitates Apg12p conjugation. The interaction of Apg10p with Apg12p is dependent on the carboxyl-terminal glycine of Apg12p. Mutational analysis of the predicted active site cysteine (Cys161) within mouse Apg10p shows that mutant Apg10pC161S, which can form a stable intermediate with Apg12p, inhibits Apg12p conjugation even in the presence of Apg7p, while overexpression of Apg7p facilitates formation of an Apg12p-Apg5p conjugate. Furthermore, the coexpression of Apg10p with Apg7p facilitates the modification of a soluble form of MAP-LC3 to a membrane-bound form, a second modification essential for autophagy. Mouse Apg10p interacts with MAP-LC3 in HEK293 cells, while no mutant Apg10pC161S forms any intermediate with MAP-LC3. Direct interaction between Apg10p and MAP-LC3 is also demonstrated by yeast two-hybrid analysis. The inability of mutant Apg10pC161S to form any intermediate with MAP-LC3 has ruled out the possibility that MAP-LC3 interacts with Apg10p as a substrate.
- Published
- 2003
46. Mammalian Apg12p, but not the Apg12p.Apg5p conjugate, facilitates LC3 processing
- Author
-
Tomohito Nishitani, Takashi Ueno, Takahiro Nemoto, Eiki Kominami, and Isei Tanida
- Subjects
Saccharomyces cerevisiae Proteins ,Biophysics ,Autophagy-Related Proteins ,Endogeny ,Lipid-anchored protein ,Biology ,Biochemistry ,Models, Biological ,Cell Line ,Ligases ,Autophagy ,Humans ,Molecular Biology ,Ubiquitins ,Proteins ,Cell Biology ,Autophagy-Related Protein 8 Family ,Membrane ,embryonic structures ,Ubiquitin-Conjugating Enzymes ,Small Ubiquitin-Related Modifier Proteins ,biological phenomena, cell phenomena, and immunity ,Oxidoreductases ,Microtubule-Associated Proteins ,Autophagy-Related Protein 12 ,Conjugate - Abstract
A dynamic membrane rearrangement occurs in cells during autophagy to form autophagosomes. In this dynamic process, two ubiquitin-like modifications, Apg12p-conjugation and LC3-modification, are essential for the formation of autophagosomes. Apg7p and Apg10p catalyze the conjugation of Apg12p to Apg5p. The same Apg7p and Apg3p catalyze the processing of LC3 to a membrane-bound form, LC3-II. In this paper, we investigated whether Apg12p has an influence on the second LC3-modification system. A cross-linking experiment revealed that Apg3p interacts with the endogenous Apg12p · Apg5p conjugate. However, Apg3p itself interacts with free Apg12p more preferentially than the Apg12p · Apg5p conjugate, when free Apg12p exists. When Apg12p was overexpressed, LC3 processing was significantly enhanced in the presence of Apg7p. In contrast, when the Apg12p · Apg5p conjugate itself was accumulated by the overexpression of Apg12p and Apg5p, LC3 processing was dominantly inhibited, even in the presence of Apg7p. These results indicate that both Apg12p and the Apg12p · Apg5p conjugate are regulatory factors for LC3 processing.
- Published
- 2002
47. Calcium-sensitive cls mutants of Saccharomyces cerevisiae showing a Pet- phenotype are ascribable to defects of vacuolar membrane H(+)-ATPase activity
- Author
-
Yoshikazu Ohya, Isei Tanida, N Umemoto, Akinori Ohta, Yasuhiro Anraku, and Hidetoshi Iida
- Subjects
Glycerol ,ATPase ,Protein subunit ,Mutant ,Genes, Fungal ,Vacuole ,Saccharomyces cerevisiae ,Biochemistry ,Oxygen Consumption ,Molecular Biology ,Phospholipids ,biology ,Structural gene ,Biological Transport ,Cell Biology ,Aerobiosis ,Mitochondria ,Cytosol ,Proton-Translocating ATPases ,Phenotype ,Mutation ,Vacuoles ,biology.protein ,Calcium ,Intracellular ,Phosphatidylserine decarboxylase ,Inositol - Abstract
Ca(2+)-sensitive mutants of the yeast Saccharomyces cerevisiae showing a Pet- phenotype (cls7-cls11) have lesions in a system for maintaining intracellular Ca2+ homeostasis (Ohya, Y., Ohsumi, Y., and Anraku, Y. (1986) J. Gen. Microbiol. 132, 979-988). Genetic and biochemical studies have demonstrated that these Pet- cls mutants are related to defects in vacuolar membrane H(+)-ATPase. CLS7 and CLS8 were found to be identical with the structural genes encoding subunit c (VMA3) and subunit a (VMA1), respectively, of the enzyme. In addition, these five mutants all had vma defects; no vacuolar membrane ATPase activity was detected in the cls cells, and the cls mutants showed a loss of ability to acidify the vacuole in vivo. Measurements of the cytosolic free Ca2+ concentration [( Ca2+]i) in individual cells showed that the average [Ca2+]i in wild-type cells was 150 +/- 80 nM, whereas that in five Pet- cls cells was 900 +/- 100 nM. These data are consistent with the observation that vacuolar membrane vesicles prepared from the Pet- cls cells have lost ATP-dependent Ca2+ uptake activities. The cls defects of vacuolar membrane H(+)-ATPase resulted in pleiotropic effects on several cellular activities, including Ca2+ homeostasis, glycerol metabolism, and phospholipid metabolism. The mutants showed an inositol-dependent phenotype, possibly due to alteration in regulation of phospholipid biosynthesis; the phosphatidylserine decarboxylase activities of the mutants were 15-50% of that of the wild-type cells and were not repressed by the addition of inositol. In contrast to the majority of previously isolated pet mutants (Tzagoloff, A., and Dieckmann, C. L. (1990) Microbiol. Rev. 54, 211-225), the Pet- cls mutants showed no detectable mitochondrial defects. Taking all these findings into account, we suggest that at least six genes, VMA1 (CLS8, subunit a), VMA2 (subunit b), VMA3 (CLS7, subunit c), VMA11 (CLS9), VMA12 (CLS10), and VMA13 (CLS11), are required for expression of the vacuolar membrane H(+)-ATPase activity.
- Published
- 1991
48. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes
- Author
-
Jan A.K.W. Kiel, Marianne M. Laporte, Yasuo Uchiyama, Lesya V. Tumanovska, Paula I. Moreira, Ray Truant, Russell L. Deter, Corinne Clavé, Xiongwei Zhu, Carlos López-Otín, Katharina Spanel-Borowski, Xuejun Jiang, David Kessel, William A. Dunn, Clark W. Distelhorst, Eeva-Liisa Eskelinen, Fu-Cheng Lin, Michele S. Swanson, Michael Thumm, You-Wen He, Alexei Terman, Leroy F. Liu, Hans-Uwe Simon, Marco Sandri, Thomas P. Neufeld, Per E. Stromhaug, Eva C. Vaquero, Janice S. Blum, Graham S. Taylor, David S. Askew, Giovanni Miotto, Michael Duszenko, Bruce A. Bamber, Marian DiFiglia, William T. Jackson, Katsuhiko Kitamoto, Bernd Nürnberg, J. Fred Dice, Chihiro Sasakawa, John J. Shacka, Attila L. Kovács, Kozo Fujisaki, Michael Moore, Savithramma P. Dinesh-Kumar, Ameeta Kelekar, David A. Gewirtz, Augustine M.K. Choi, Kah-Leong Lim, Bulent Ozpolat, Masaaki Komatsu, Kirill Kiselyov, Wilfried Bursch, Gianluca Tettamanti, Craig B. Thompson, Spencer B. Gibson, Takashi Ueno, Diane C. Bassham, Chanhee Kang, Mark A. Smith, Laura J. Olsen, Pyo Kim Hong, Michael J. Lenardo, Shengkan Jin, Patrick B. Dennis, Aviva M. Tolkovsky, Sharon M. Gorski, Gabriel Lopez-Berestein, Daniel J. Klionsky, Patrice Codogno, Antje Gohla, Hiroshi Sakagami, Terje Johansen, Yasuyoshi Sakai, Junichi Sadoshima, Takeshi Noda, José M. Fuentes, Michisuke Yuzaki, Mauro Piacentini, Michel Dron, Gutian Xiao, Frank C. Dorsey, Josef Mautner, Isei Tanida, Miklós Sass, John H. Brumell, Olga Zabirnyk, Francesco Cecconi, David C. Rubinsztein, Wim Martinet, Jeffrey Settleman, Sharon A. Tooze, Audrey Esclatine, John L. Cleveland, Kozo Tanaka, James M. Cregg, Jayanta Debnath, Leon Murphy, Oleksandr Seleverstov, Kay F. Macleod, Maria Høyer-Hansen, Naweed I. Naqvi, Ramon Gonzalez, Akiko Iwasaki, Ira Tabas, Patrizia Agostinis, Willisa Liou, Christian Münz, Michinaga Ogawa, Li Yu, Wulf Dröge, Huan Yao Lei, Baharia Mograbi, Meredith A. Steeves, Bo Lu, Marja Jäättelä, Ken Matsuoka, Ulf T. Brunk, Tassula Proikas-Cezanne, Robert S. B. Clark, Kevin M. Ryan, Harald Stenmark, Iryna Monastyrska, Jacques Landry, Ben A. Bahr, Mojgan Djavaheri-Mergny, Hong Gang Wang, Tomasz Motyl, Juan Fueyo, Vojo Deretic, Hagai Abeliovich, George S. Yap, László Fésüs, Paul A.M. Michels, John W. Wiley, Martine Biard-Piechaczyk, Xun Hu, Xiaoxiang Zheng, Wilhelm P. Mistiaen, Steven Clarke, Roberta A. Gottlieb, Kim A. Heidenreich, Seiji Kondo, Paul Webster, Fulvio Reggiori, Irving M. Shapiro, Carlos S. Subauste, Zsolt Tallóczy, Ichizo Nishino, Ettore Bergamini, Vickram Srinivas, Shoshana Paglin, Andrea Ballabio, Federica Di Sano, Nicholas J. Talbot, María Isabel Colombo, Zvulun Elazar, Dieter Häussinger, Chia Yi Kuan, Tibor Vellai, Anne Simonsen, Nancy L. Oleinick, Fen-Biao Gao, Jae U. Jung, Seiichiro Sugimoto, Gjumrakch Aliev, Abdelhaq Rami, Issidora S. Papassideri, Eduardo Cebollero, Beth Levine, N. Tony Eissa, David H. Perlmutter, Weidong Le, Wei-Pang Huang, Phillip A. Dennis, Joseph A. Hill, Michael W. Vogel, Charleen T. Chu, Noboru Mizushima, Walter Malorni, Brigitte Galliot, Andrew P. Lieberman, Erwin Knecht, Joachim Yahalom, Alfred L. Goldberg, Devendra K. Agrawal, Fumihiko Takeshita, Rodney J. Devenish, Keiji Tanaka, Lih-Shen Chin, Crisfiano Simone, Xiaoning Bi, David Sulzer, Zhijun Xi, Misuzu Baba, Andrei A. Sibirny, Elaine C.M. Silva-Zacarin, Guido Kroemer, Kim D. Finley, George Perry, Glen E. Palmer, Néstor L. Uzcátegui, Ana Coto-Montes, Ida J. van der Klei, Cristina González-Estévez, Xiao Ming Yin, Yingyu Chen, J. Paul Taylor, Alfred J. Meijer, Yuji Moriyasu, Jongkyeong Chung, Rakesh Kumar, Nadine Camougrand, Timothy J. Kinsella, Dale E. Bredesen, Bärbel Rohrer, Jeffrey L. Brodsky, Eiki Kominami, Ana Maria Cuervo, Adi Kimchi, Mondira Kundu, Peter G.H. Clarke, Zhenyu Yue, Ronit Pinkas-Kramarski, Per Ottar Seglen, Mark Prescott, Toshihiko Suzuki, Miles Parkes, Eric H. Baehrecke, Alicia Meléndez, Tamotsu Yoshimori, Claudio Schneider, Jin Ming Yang, Nina Raben, Francesca Demarchi, Ralph A. Nixon, and Motoni Kadowaki
- Subjects
Autophagosome ,GLUCAGON-INDUCED AUTOPHAGY ,VINBLASTINE-INDUCED AUTOPHAGOCYTOSIS ,STARVATION-INDUCED AUTOPHAGY ,Autolysosome ,autophagosome ,Flux ,Lysosome ,Phagophore ,Stress ,Vacuole ,MURINE PANCREATIC ACINAR ,stress ,ISOLATED RAT HEPATOCYTES ,SEMINAL-VESICLE CELLS ,DROSOPHILA FAT-BODY ,BETAINE HOMOCYSTEINE METHYLTRANSFERASE ,ELECTRON MICROSCOPIC EXAMINATION ,CHAPERONE-MEDIATED AUTOPHAGY ,0302 clinical medicine ,Chaperone-mediated autophagy ,Phagosomes ,Plants/metabolism ,0303 health sciences ,Autophagy database ,Plants ,Saccharomyces cerevisiae Proteins/metabolism ,autolysosome ,Cell biology ,Protein Transport ,Eukaryotic Cells ,Data Interpretation, Statistical ,030220 oncology & carcinogenesis ,Microtubule-Associated Proteins/metabolism ,lysosome ,Autophagy/physiology ,Microtubule-Associated Proteins ,Phagosomes/metabolism ,autophagy ,Autophagy-Related Protein 8 Family ,Saccharomyces cerevisiae Proteins ,Settore BIO/06 ,Guidelines as Topic ,Computational biology ,Biology ,Models, Biological ,Article ,03 medical and health sciences ,Animals ,Humans ,Set (psychology) ,Molecular Biology ,Microscopy, Fluorescence/methods ,phagophore ,030304 developmental biology ,Eukaryotic Cells/physiology ,flux ,vacuole ,Interpretation (logic) ,Clinical Laboratory Techniques ,Laboratory Techniques and Procedures ,Phagosomes/physiology ,Protein Processing, Post-Translational ,Autophagy ,Cell Biology ,Microscopy, Fluorescence ,Human medicine - Abstract
Research in autophagy continues to accelerate,1and as a result many new scientists are entering the field. Accordingly, it is important to establish a standard set of criteria for monitoring macroautophagy in different organisms. Recent reviews have described the range of assays that have been used for this purpose.2,3There are many useful and convenient methods that can be used to monitor macroautophagy in yeast, but relatively few in other model systems, and there is much confusion regarding acceptable methods to measure macroautophagy in higher eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers of autophagosomes versus those that measure flux through the autophagy pathway; thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from fully functional autophagy that includes delivery to, and degradation within, lysosomes (in most higher eukaryotes) or the vacuole (in plants and fungi). Here, we present a set of guidelines for the selection and interpretation of the methods that can be used by investigators who are attempting to examine macroautophagy and related processes, as well as by reviewers who need to provide realistic and reasonable critiques of papers that investigate these processes. This set of guidelines is not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to verify an autophagic response. ©2008 Landes Bioscience.
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.