1. Functional Connectivity Changes of Key Regions for Motor Initiation in Parkinson's Disease.
- Author
-
Hensel L, Hoffstaedter F, Caspers J, Michely J, Mathys C, Heller J, Eickhoff CR, Reetz K, Südmeyer M, Fink GR, Schnitzler A, Grefkes C, and Eickhoff SB
- Subjects
- Aged, Female, Humans, Male, Middle Aged, Motor Cortex physiopathology, Nerve Net physiopathology, Parkinson Disease physiopathology, Magnetic Resonance Imaging methods, Motor Cortex diagnostic imaging, Movement physiology, Nerve Net diagnostic imaging, Parkinson Disease diagnostic imaging, Principal Component Analysis methods
- Abstract
Akinesia, a cardinal symptom of Parkinson's disease, has been linked to abnormal activation in putamen and posterior medial frontal cortex (pMFC). However, little is known whether clinical severity of akinesia is linked to dysfunctional connectivity of these regions. Using a seed-based approach, we here investigated resting-state functional connectivity (RSFC) of putamen, pMFC and primary motor cortex (M1) in 60 patients with Parkinson's disease on regular medication and 72 healthy controls. We found that in patients putamen featured decreases of connectivity for a number of cortical and subcortical areas engaged in sensorimotor and cognitive processing. In contrast, the pMFC showed reduced connectivity with a more focal cortical network involved in higher-level motor-cognition. Finally, M1 featured a selective disruption of connectivity in a network specifically connected with M1. Correlating clinical impairment with connectivity changes revealed a relationship between akinesia and reduced RSFC between pMFC and left intraparietal lobule (IPL). Together, the present study demonstrated RSFC decreases in networks for motor initiation and execution in Parkinson's disease. Moreover, results suggest a relationship between pMFC-IPL decoupling and the manifestation of akinetic symptoms.
- Published
- 2019
- Full Text
- View/download PDF