1. Troponin C gene mutations on cardiac muscle cell and skeletal Regulation: A comprehensive review.
- Author
-
Aborode AT, Olamilekan Adesola R, Idris I, Adio WS, Scott GY, Chakoma M, Oluwaseun AA, Onifade IA, Adeoye AF, Aluko BA, and Abok JI
- Subjects
- Humans, Myocytes, Cardiac metabolism, Muscle, Skeletal metabolism, Cardiomyopathies genetics, Cardiomyopathies therapy, Animals, Troponin C genetics, Troponin C metabolism, Mutation
- Abstract
Background: The troponin complex plays a crucial role in regulating skeletal and cardiac contraction. Congenital myopathies can occur due to several mutations in genes that encode skeletal troponin. Moreover, there is limited information regarding the composition of skeletal troponin. This review specifically examines a comprehensive review of the TNNC gene mutations on cardiac and skeletal regulations., Main Body: Troponin C (TNNC) has been linked to a newly discovered inherited muscle disorder. Genetic variations in genes that encode skeletal troponin can impair the function of sarcomeres. Various treatment approaches have been employed to mitigate the impact of variations, including the use of troponin activators, the injection of wild-type protein via AAV gene therapy, and myosin modification to enhance muscle contraction. The processes responsible for the pathophysiological implications of the variations in genes that encode skeletal troponin are not fully understood., Conclusion: This comprehensive review will contribute to the understanding of the relationship between human cardiomyopathy and TNNC mutations and will guide the development of therapy approaches., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024. Published by Elsevier B.V.)
- Published
- 2024
- Full Text
- View/download PDF