1. The Myoblast C2C12 Transfected with Mutant Valosin-Containing Protein Exhibits Delayed Stress Granule Resolution on Oxidative Stress.
- Author
-
Rodriguez-Ortiz CJ, Flores JC, Valenzuela JA, Rodriguez GJ, Zumkehr J, Tran DN, Kimonis VE, and Kitazawa M
- Subjects
- Animals, Cell Line, Disease Models, Animal, Fluorescent Antibody Technique, Frontotemporal Dementia genetics, Humans, Immunoblotting, Immunohistochemistry, Mice, Muscular Dystrophies, Limb-Girdle genetics, Myoblasts metabolism, Myositis, Inclusion Body genetics, Osteitis Deformans genetics, Transfection, Valosin Containing Protein, Adenosine Triphosphatases genetics, Cell Cycle Proteins genetics, Frontotemporal Dementia pathology, Muscular Dystrophies, Limb-Girdle pathology, Myoblasts pathology, Myositis, Inclusion Body pathology, Osteitis Deformans pathology, Oxidative Stress physiology
- Abstract
Valosin-containing protein (VCP) mutations cause inclusion body myopathy with Paget disease and frontotemporal dementia. However, the mechanisms by which mutant VCP triggers degeneration remain unknown. Here, we investigated the role of VCP in cellular stress and found that the oxidative stressor arsenite and heat shock-activated stress responses evident by T-intracellular antigen-1-positive granules in C2C12 myoblasts. Granules also contained phosphorylated transactive response DNA-binding protein 43, ubiquitin, microtubule-associated protein 1A/1B light chains 3, and lysosome-associated membrane protein 2. Mutant VCP produced more T-intracellular antigen-1-positive granules than wild-type in the postarsenite exposure period. Similar results were observed for other granule components, indicating that mutant VCP delayed clearance of stress granules. Furthermore, stress granule resolution was impaired on differentiated C2C12 cells expressing mutant VCP. To address whether mutant VCP triggers dysregulation of the stress granule pathway in vivo, we analyzed skeletal muscle of aged VCPR155H-knockin mice. We found significant increments in oxidated proteins but observed the stress granule markers RasGAP SH3-binding protein and phosphorylated eukaryotic translation initiation factor 2α unchanged. The mixed results indicate that mutant VCP together with aging lead to higher oxidative stress in skeletal muscle but were insufficient to disrupt the stress granule pathway. Our findings support that deficiencies in recovery from stressors may result in attenuated tolerance to stress that could trigger muscle degeneration., (Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.)
- Published
- 2016
- Full Text
- View/download PDF