1. MAGNETOHYDRODYNAMIC TERNARY HYBRID NANOFLUID FLOW OVER A STRETCHING SURFACE SUBJECT TO THERMAL CONVECTIVE AND ZERO MASS FLUX CONDITIONS.
- Author
-
ABAS, SYED ARSHAD, ULLAH, HAKEEM, ISLAM, SAEED, and FIZA, MEHREEN
- Subjects
- *
MICROPOLAR elasticity , *NANOFLUIDS , *NUSSELT number , *THERMAL conductivity , *NANOFLUIDICS , *HEAT transfer , *ORDINARY differential equations , *SURFACE forces , *MAGNETOHYDRODYNAMICS - Abstract
Nanoparticles have the capability to augment the thermal conductivity of nanofluids. For the transmission of heat, the material's low thermal conductivity is the key problem. Therefore, to increase the thermal conductivity, researchers mixed different nanoparticles in the base fluids. In this field of study, utilizing three different particles is the most recent strategy to form a ternary hybrid nanofluid that gives us better results in terms of heat transfer. The interaction of three different kinds of nanoparticles, i.e. copper, alumina and silver, is considered with water serving as the base fluid to form a ternary hybrid nanofluid. The paper explores the behavior of ternary hybrid nanofluids on heat and mass transportation phenomena of the two-dimensional magnetohydrodynamic (MHD) micropolar flow across a porous extending surface with zero mass flux and convective conditions. The Brownian motion, thermal radiation, heat source and sink, and joule heating are taken into consideration in the temperature equation. The chemical reaction is incorporated into the concentration equation. Appropriate similarity transformations are used to transform the system of partial differential equations (PDEs) to a coupled system of ordinary differential equations (ODEs). The homotopy analysis method (HAM) is used to solve the system of the flow equations. The effects of the nanoparticle's volume fractions and other different physical parameters on the surface drag force, Nusselt number, velocities, microrotation, temperature and concentration profiles are scrutinized through figures and tables. The outcomes of the present investigation show that the heat transfer rate is augmented with the increasing value of thermophoresis parameter. The magnetic field has augmented temperature while the opposite result is seen in velocity and microrotation profiles. With the escalating values of thermophoresis parameter, the concentration and temperature of ternary hybrid nanofluids are boosted while the increasing Brownian and chemical reaction parameters have decreased the concentration profile. The surface friction coefficient exhibited by the ternary hybrid nanofluid is higher than hybrid and conventional nanofluids. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF