1. Polymer-coated silver-iron nanoparticles as efficient and biodegradable MRI contrast agents.
- Author
-
Amendola V, Guadagnini A, Agnoli S, Badocco D, Pastore P, Fracasso G, Gerosa M, Vurro F, Busato A, and Marzola P
- Subjects
- Contrast Media, Iron, Magnetic Resonance Imaging, Polymers, Tissue Distribution, Nanoparticles, Silver
- Abstract
Bimetallic nanoparticles allow new and synergistic properties compared to the monometallic equivalents, often leading to unexpected results. Here we present on silver-iron nanoparticles coated with polyethylene glycol, which exhibit a high transverse relaxivity (316 ± 13 mM
-1 s-1 , > 3 times that of the most common clinical benchmark based on iron oxide), excellent colloidal stability and biocompatibility in vivo. Ag-Fe nanoparticles are obtained through a one-step, low-cost laser-assisted synthesis, which makes surface functionalization with the desired biomolecules very easy. Besides, Ag-Fe nanoparticles show biodegradation over a few months, as indicated by incubation in the physiological environment. This is crucial for nanomaterials removal from the living organism and, in fact, in vivo biodistribution studies evidenced that Ag-Fe nanoparticles tend to be cleared from liver over a period in which the benchmark iron oxide contrast agent persisted. Therefore, the Ag-Fe NPs offer positive prospects for solving the problems of biopersistence, contrast efficiency, difficulties of synthesis and surface functionalization usually encountered in nanoparticulate contrast agents., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2021 Elsevier Inc. All rights reserved.)- Published
- 2021
- Full Text
- View/download PDF