Anamaria Musat, Kevin Sartori, Simon Hettler, Fadi Choueikani, Sylvie Begin-Colin, Jean-Marc Greneche, Raul Arenal, Peter Bencok, Benoit P. Pichon, Paul Steadman, Agence Nationale de la Recherche (France), German Research Foundation, Ministerio de Economía y Competitividad (España), Agencia Estatal de Investigación (España), Ministerio de Ciencia, Innovación y Universidades (España), European Commission, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Laboratoire Léon Brillouin (LLB - UMR 12), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut des Molécules et Matériaux du Mans (IMMM), Le Mans Université (UM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Instituto de Nanociencia y Materiales de Aragón (INMA), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)-Universidad de Zaragossa, Laboratorio de microscopias avanzadas (LMA), University of Zaragoza - Universidad de Zaragoza [Zaragoza], Fundación Agencia Aragonesa para la Investigación y el Desarrollo (ARAID), Institut Universitaire de France (IUF), and Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.)
Nanoparticles that combine several magnetic phases offer wide perspectives for cutting edge applications because of the high modularity of their magnetic properties. Besides the addition of the magnetic characteristics intrinsic to each phase, the interface that results from core–shell and, further, from onion structures leads to synergistic properties such as magnetic exchange coupling. Such a phenomenon is of high interest to overcome the superparamagnetic limit of iron oxide nanoparticles which hampers potential applications such as data storage or sensors. In this manuscript, we report on the design of nanoparticles with an onion-like structure which has been scarcely reported yet. These nanoparticles consist of a Fe3−δO4 core covered by a first shell of CoFe2O4 and a second shell of Fe3−δO4, e.g., a Fe3−δO4@CoFe2O4@Fe3−δO4 onion-like structure. They were synthesized through a multistep seed-mediated growth approach which consists consists in performing three successive thermal decomposition of metal complexes in a high-boiling-point solvent (about 300 °C). Although TEM micrographs clearly show the growth of each shell from the iron oxide core, core sizes and shell thicknesses markedly differ from what is suggested by the size increasing. We investigated very precisely the structure of nanoparticles in performing high resolution (scanning) TEM imaging and geometrical phase analysis (GPA). The chemical composition and spatial distribution of atoms were studied by electron energy loss spectroscopy (EELS) mapping and spectroscopy. The chemical environment and oxidation state of cations were investigated by 57Fe Mössbauer spectrometry, soft X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD). The combination of these techniques allowed us to estimate the increase of Fe2+ content in the iron oxide core of the core@shell structure and the increase of the cobalt ferrite shell thickness in the core@shell@shell one, whereas the iron oxide shell appears to be much thinner than expected. Thus, the modification of the chemical composition as well as the size of the Fe3−δO4 core and the thickness of the cobalt ferrite shell have a high impact on the magnetic properties. Furthermore, the growth of the iron oxide shell also markedly modifies the magnetic properties of the core–shell nanoparticles, thus demonstrating the high potential of onion-like nanoparticles to accurately tune the magnetic properties of nanoparticles according to the desired applications., K.S. was supported by a PhD grant from the French Agence Nationale de la Recherche (ANR) under the reference ANR11-LABX-0058-NIE within the Investissement d’Avenir program ANR-10-IDEX-0002-02 and SOLEIL synchrotron/Laboratoire Léon Brillouin fellowship. The authors are grateful to SOLEIL synchrotron light source for providing the access to DEIMOS beamline and to DIAMOND synchrotron light source for providing access to BLADE beamline. HRSTEM and STEM-EELS studies were conducted at the Laboratorio de Microscopias Avanzadas, Universidad de Zaragoza, Spain. S.H. is grateful to DFG (HE 7675/1-1). R.A. gratefully acknowledges the support from the Spanish Ministry of Economy and Competitiveness (MINECO) and the MICINN through project grants MAT2016-79776-P (AEI/FEDER, UE) and PID2019-104739GB-100/AEI/10.13039/501100011033 as well as from the European Union H2020 program “ESTEEM3” (823717).