1. Toxicity and Oxidative Stress Biomarkers in the Organs of Mice Treated with Mesoporous Polydopamine Nanoparticles Modified with Iron and Coated with Cancer Cell Membrane.
- Author
-
Szukalska M, Grześkowiak BF, Bigaj-Józefowska MJ, Witkowska M, Cicha E, Sujka-Kordowska P, Miechowicz I, Nowicki M, Mrówczyński R, and Florek E
- Subjects
- Animals, Humans, Mice, Hep G2 Cells, Liver drug effects, Cell Membrane drug effects, Cell Membrane chemistry, Biomarkers, Photothermal Therapy methods, Liver Neoplasms drug therapy, Xenograft Model Antitumor Assays, Porosity, Indoles chemistry, Indoles pharmacology, Indoles administration & dosage, Oxidative Stress drug effects, Polymers chemistry, Mice, Inbred BALB C, Doxorubicin pharmacology, Doxorubicin chemistry, Doxorubicin administration & dosage, Nanoparticles chemistry, Mice, Nude, Kidney drug effects, Kidney metabolism, Iron chemistry
- Abstract
Purpose: Polydopamine nanoparticles (PDA NPs) have great potential in medicine. Their applications being widely investigated in cancer therapy, imaging, chemotherapy, photodynamic therapy (PDT), photothermal therapy (PTT), and tissue repair. The aim of our study was to assess the in vivo toxicity and changes in oxidative stress biomarkers in organs of animals treated with mesoporous PDA NPs modified with iron (MPDAFe NPs), coated with the cancer cell membrane and loaded with doxorubicin (DOX), and subsequently subjected to PTT., Methods: Liver and kidney homogenates were obtained from BALB/c nude mice with xenograft HepG2 human hepatoma cells, treated with iron modified mesoporous PDA nanoparticles, coated with the cancer cell membrane and loaded with doxorubicin (MPDAFe@DOX@Mem NPs), and subjected to PTT. These samples were used for histological evaluation and measurement of oxidative stress biomarkers, including total protein (TP), reduced glutathione (GSH), nitric oxide (NO), S-nitrosothiols (RSNO), thiobarbituric acid reactive substances (TBARS), trolox equivalent antioxidant capacity (TEAC), catalase (CAT), glutathione S-transferase (GST), and superoxide dismutase (SOD)., Results: In the kidney, MPDAFe@DOX@Mem NPs in combination with PTT increased GSH (43%), TBARS (32%), and CAT (27%), while SOD decreased by 20% compared to the control group. Additionally, CAT activity in the liver increased by 79%., Conclusion: Significant differences in oxidative stress parameters and histological changes after administration with MPDAFe@DOX@Mem NPs and PTT were observed in the kidneys, showing more pronounced changes than the liver, indicating potential kidney toxicity. Our research provides insights into oxidative stress and possible toxic effects after in vivo administration of mesoporous PDA NPs combined with chemotherapy-photothermal therapy (CT-PTT), which is extremely important for their future applications in anticancer therapies., Competing Interests: The authors report no conflicts of interest in this work., (© 2024 Szukalska et al.)
- Published
- 2024
- Full Text
- View/download PDF