1. Fabrication of diamond nanowires for quantum information processing applications
- Author
-
Hausmann, Birgit J.M., Khan, Mughees, Zhang, Yinan, Babinec, Tom M., Martinick, Katie, McCutcheon, Murray, Hemmer, Phil R., and Lončar, Marko
- Subjects
- *
DIAMOND crystals , *NANOWIRES , *MICROFABRICATION , *QUANTUM theory , *POLYCRYSTALS , *NUMERICAL analysis , *NITROGEN , *ELECTRON beam lithography - Abstract
Abstract: We present a design and a top-down fabrication method for realizing diamond nanowires in both bulk single crystal and polycrystalline diamond. Numerical modeling was used to study coupling between a Nitrogen Vacancy (NV) color center and optical modes of a nanowire, and to find an optimal range of nanowire diameters that allows for large collection efficiency of emitted photons. Inductively coupled plasma (ICP) reactive ion etching (RIE) with oxygen is used to fabricate the nanowires. Drop-casted nanoparticles (including Au, SiO2 and Al2O3) as well as electron beam lithography defined spin-on glass and evaporated Au have been used as an etch mask. We found Al2O3 nanoparticles to be the most etch resistant. At the same time FOx e-beam resist (spin-on glass) proved to be a suitable etch mask for fabrication of ordered arrays of diamond nanowires. We were able to obtain nanowires with near-vertical sidewalls in both polycrystalline and single crystal diamond. The heights and diameters of the polycrystalline nanowires presented in this paper are ≈1μm and 120–340nm, respectively, having a 200nm/min etch rate. In the case of single crystal diamond (types Ib and IIa) nanowires the height and diameter for different diamonds and masks shown in this paper were 1–2.4μm and 120–490nm with etch rates between 190 and 240nm/min. [Copyright &y& Elsevier]
- Published
- 2010
- Full Text
- View/download PDF