1. Critical current modulation induced by an electric field in superconducting tungsten-carbon nanowires
- Author
-
Vladimir M. Fomin, Pablo Orús, José María de Teresa, Rosa Córdoba, Gobierno de Aragón, Fundación 'la Caixa', European Commission, Agencia Estatal de Investigación (España), Ministerio de Ciencia, Innovación y Universidades (España), Ministerio de Economía y Competitividad (España), Consejo Superior de Investigaciones Científicas (España), German Research Foundation, European Cooperation in Science and Technology, and Ministry of Education and Science of the Russian Federation
- Subjects
Superconductivity ,Multidisciplinary ,Materials science ,Condensed matter physics ,Science ,Nanowire ,Critical value ,Focused ion beam ,Article ,Superconducting properties and materials ,Sputtering ,Condensed Matter::Superconductivity ,Electric field ,Superconducting devices ,Medicine ,Electron-beam lithography ,Voltage - Abstract
The critical current of a superconducting nanostructure can be suppressed by applying an electric field in its vicinity. This phenomenon is investigated throughout the fabrication and electrical characterization of superconducting tungsten-carbon (W-C) nanostructures grown by Ga+ focused ion beam induced deposition (FIBID). In a 45 nm-wide, 2.7 μm-long W-C nanowire, an increasing side-gate voltage is found to progressively reduce the critical current of the device, down to a full suppression of the superconducting state below its critical temperature. This modulation is accounted for by the squeezing of the superconducting current by the electric field within a theoretical model based on the Ginzburg–Landau theory, in agreement with experimental data. Compared to electron beam lithography or sputtering, the single-step FIBID approach provides with enhanced patterning flexibility and yields nanodevices with figures of merit comparable to those retrieved in other superconducting materials, including Ti, Nb, and Al. Exhibiting a higher critical temperature than most of other superconductors, in which this phenomenon has been observed, as well as a reduced critical value of the gate voltage required to fully suppress superconductivity, W-C deposits are strong candidates for the fabrication of nanodevices based on the electric field-induced superconductivity modulation., P.O. acknowledges Aragón Government for funding. The project that gave rise to these results received the support of a fellowship from “la Caixa” Foundation (ID 100010434). The fellowship code is LCF/BQ/PR19/11700008. Funding from the the European Union’s Horizon 2020 research and innovation programme under the grant agreement No 892427 has been received. Authors acknowledge financial support from the Spanish Ministry of Economy and Competitiveness through Projects MAT2018-102627-T and MAT2017-82970-C2-2-R, from CSIC through project PIE202060E187, and from the Aragón Regional Government (Construyendo Europa desde Aragón) through Project E13_20R, with European Social Fund funding. The microscopy works have been conducted in the Laboratory for Advanced Microscopies (LMA), at the Institute of Nanoscience and Materials of Aragón (INMA)—University of Zaragoza. Authors acknowledge the LMA for offering access to their instruments and expertise. Authors acknowledge the use of the Physical Measurements Service in Servicio General de Apoyo a la Investigación (SAI)—University of Zaragoza. This work has been supported by projects H2020 (FATMOLSproject) and Excellence Unit María de Maeztu (CEX2019-000919-M). This work has been supported by the German Research Foundation (DFG) project #FO 956/6-1 (Germany) and European Cooperation in Science and Technology—COST Action #CA16218 (NANOCOHYBRI). V.M.F. acknowledges partial support from the MEPhI (Russia).
- Published
- 2021
- Full Text
- View/download PDF