1. Iron supplementation is sufficient to rescue skeletal muscle mass and function in cancer cachexia.
- Author
-
Wyart E, Hsu MY, Sartori R, Mina E, Rausch V, Pierobon ES, Mezzanotte M, Pezzini C, Bindels LB, Lauria A, Penna F, Hirsch E, Martini M, Mazzone M, Roetto A, Geninatti Crich S, Prenen H, Sandri M, Menga A, and Porporato PE
- Subjects
- Animals, Dietary Supplements, Humans, Iron metabolism, Mice, Muscle, Skeletal metabolism, Cachexia etiology, Cachexia metabolism, Neoplasms complications, Neoplasms drug therapy, Neoplasms metabolism
- Abstract
Cachexia is a wasting syndrome characterized by devastating skeletal muscle atrophy that dramatically increases mortality in various diseases, most notably in cancer patients with a penetrance of up to 80%. Knowledge regarding the mechanism of cancer-induced cachexia remains very scarce, making cachexia an unmet medical need. In this study, we discovered strong alterations of iron metabolism in the skeletal muscle of both cancer patients and tumor-bearing mice, characterized by decreased iron availability in mitochondria. We found that modulation of iron levels directly influences myotube size in vitro and muscle mass in otherwise healthy mice. Furthermore, iron supplementation was sufficient to preserve both muscle function and mass, prolong survival in tumor-bearing mice, and even rescues strength in human subjects within an unexpectedly short time frame. Importantly, iron supplementation refuels mitochondrial oxidative metabolism and energy production. Overall, our findings provide new mechanistic insights in cancer-induced skeletal muscle wasting, and support targeting iron metabolism as a potential therapeutic option for muscle wasting diseases., (© 2022 The Authors. Published under the terms of the CC BY 4.0 license.)
- Published
- 2022
- Full Text
- View/download PDF