1. Autocrine expression of both endostatin and green fluorescent protein provides a synergistic antitumor effect in a murine neuroblastoma model.
- Author
-
Davidoff AM, Leary MA, Ng CY, Spurbeck WW, Frare P, Vanhove M, Nienhuis AW, and Vanin EF
- Subjects
- Angiogenesis Inhibitors pharmacology, Animals, Cell Division, Cell Movement, Cell Separation, Cells, Cultured, Cloning, Molecular, Combined Modality Therapy, Endostatins, Endothelium, Vascular cytology, Flow Cytometry, Green Fluorescent Proteins, Humans, Immunotherapy methods, Mice, Mice, SCID, Plasmids metabolism, Protein Biosynthesis, Recombinant Proteins metabolism, Retroviridae genetics, T-Lymphocytes metabolism, Time Factors, Transcription, Genetic, Transduction, Genetic, Tumor Cells, Cultured, Umbilical Veins cytology, Collagen biosynthesis, Collagen genetics, Genetic Therapy methods, Luminescent Proteins genetics, Luminescent Proteins metabolism, Neuroblastoma therapy, Peptide Fragments biosynthesis, Peptide Fragments genetics
- Abstract
Modalities that act through different mechanisms can often provide synergistic antitumor activity for the treatment of refractory tumors when used in combination. Here we report a gene therapy approach in which the genes for the angiogenesis inhibitor, endostatin, and the marker protein and potent immunogen, green fluorescent protein (GFP), were delivered to murine neuroblastoma cells prior to inoculation of the tumor cells into syngeneic immunocompetent mice. Although the effect of either angiogenesis inhibition or immunomodulation alone resulted in only a modest delay in tumor growth, when these approaches were used in combination, prevention of the formation of appreciable tumors was effected in 15 of 24 (63%) mice. The combination of endostatin and GFP expression elicited a strong immune response that was T cell-mediated and was reactive against both GFP and tumor cell line-specific antigens. This afforded treated mice protection against subsequent tumor challenge with unmodified tumor cells. These results suggest that antiangiogenic and immunotherapy strategies, when used in a gene therapy-mediated approach, can act synergistically in an effective multimodality anticancer approach.
- Published
- 2001
- Full Text
- View/download PDF