1. Circuit and molecular architecture of a ventral hippocampal network.
- Author
-
Gergues MM, Han KJ, Choi HS, Brown B, Clausing KJ, Turner VS, Vainchtein ID, Molofsky AV, and Kheirbek MA
- Subjects
- Animals, Brain cytology, Brain metabolism, Female, Gene Expression Profiling, Male, Mice, Inbred C57BL, Neural Pathways cytology, Neural Pathways metabolism, CA1 Region, Hippocampal cytology, CA1 Region, Hippocampal metabolism, Neurons cytology, Neurons metabolism
- Abstract
The ventral hippocampus (vHPC) is a critical hub in networks that process emotional information. While recent studies have indicated that ventral CA1 (vCA1) projection neurons are functionally dissociable, the basic principles of how the inputs and outputs of vCA1 are organized remain unclear. Here, we used viral and sequencing approaches to define the logic of the extended vCA1 circuit. Using high-throughput sequencing of genetically barcoded neurons (MAPseq) to map the axonal projections of thousands of vCA1 neurons, we identify a population of neurons that simultaneously broadcast information to multiple areas known to regulate the stress axis and approach-avoidance behavior. Through molecular profiling and viral input-output tracing of vCA1 projection neurons, we show how neurons with distinct projection targets may differ in their inputs and transcriptional signatures. These studies reveal new organizational principles of vCA1 that may underlie its functional heterogeneity.
- Published
- 2020
- Full Text
- View/download PDF