Songvilay, M., Petit, S., Koza, M., Rols, S., Suard, E., Skumryev, V., Martin, C., Damay, F., LLB - Nouvelles frontières dans les matériaux quantiques (NFMQ), Laboratoire Léon Brillouin (LLB - UMR 12), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), SUPA, Centre for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut Laue-Langevin (ILL), Département de physique [Departament de Física, Universitat Autònoma de Barcelona], Universitat Autònoma de Barcelona (UAB), Institució Catalana de Recerca i Estudis Avançats (ICREA), Laboratoire de cristallographie et sciences des matériaux (CRISMAT), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay, ILL, Departament de Fisica, Universitat Autónoma de Barcelona, Spain, École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), and Normandie Université (NU)-Institut de Chimie du CNRS (INC)
International audience; Polycrystalline CaFe2O4 and CaCr0.5Fe1.5O4 have been investigated by elastic and inelastic neutron scattering. In agreement with previous reports, CaFe2O4 undergoes two magnetic transitions, first to a B phase, below TNB = 200 K, then to an A phase, below TNA = 175 K, while substituted CaCr0.5Fe1.5O4 undergoes a magnetic transition to the B phase only, at TN = 125 K. Each phase corresponds to staggered antiferromagnetic chains coupled either ferromagnetically (A phase) or antiferromagnetically (B phase). In the A phase of CaFe2O4, inelastic scattering measurements show clearly defined gapped spin waves, which can be 2 modelled with classical calculations, based on a simple exchange Hamiltonian following the topology of the crystal structure. In contrast, in the B phase of both compounds, the interpretation of the excitation spectrum evades completely the classical approach, even at low temperature. These results are interpreted based on an interchain exchange close to the threshold between ferromagnetic and antiferromagnetic bonding geometry. This induces random interchain coupling, thus creating magnetic exchange disorder whose dominating effect is to blur out the magnetic excitation spectrum of the B phase. A magneto-elastic effect, through which the interchain coupling becomes sizeably ferromagnetic, and which is not observed in CaCr0.5Fe1.5O4, stabilises the A phase at low temperature in CaFe2O4.