1. Prolonged pharmacological inhibition of cathepsin C results in elimination of neutrophil serine proteases.
- Author
-
Guarino C, Hamon Y, Croix C, Lamort AS, Dallet-Choisy S, Marchand-Adam S, Lesner A, Baranek T, Viaud-Massuard MC, Lauritzen C, Pedersen J, Heuzé-Vourc'h N, Si-Tahar M, Fıratlı E, Jenne DE, Gauthier F, Horwitz MS, Borregaard N, and Korkmaz B
- Subjects
- Animals, Bronchoalveolar Lavage Fluid, Case-Control Studies, Female, Humans, Leukocyte Elastase blood, Macaca fascicularis, Papillon-Lefevre Disease enzymology, Cathepsin C antagonists & inhibitors, Cysteine Proteinase Inhibitors pharmacology, Neutrophils enzymology, Serine Proteases metabolism
- Abstract
Cathepsin C (CatC) is a tetrameric cysteine dipeptidyl aminopeptidase that plays a key role in activation of pro-inflammatory serine protease zymogens by removal of a N-terminal pro-dipeptide sequence. Loss of function mutations in the CatC gene is associated with lack of immune cell serine protease activities and cause Papillon-Lefèvre syndrome (PLS). Also, only very low levels of elastase-like protease zymogens are detected by proteome analysis of neutrophils from PLS patients. Thus, CatC inhibitors represent new alternatives for the treatment of neutrophil protease-driven inflammatory or autoimmune diseases. We aimed to experimentally inactivate and lower neutrophil elastase-like proteases by pharmacological blocking of CatC-dependent maturation in cell-based assays and in vivo. Isolated, immature bone marrow cells from healthy donors pulse-chased in the presence of a new cell permeable cyclopropyl nitrile CatC inhibitor almost totally lack elastase. We confirmed the elimination of neutrophil elastase-like proteases by prolonged inhibition of CatC in a non-human primate. We also showed that neutrophils lacking elastase-like protease activities were still recruited to inflammatory sites. These preclinical results demonstrate that the disappearance of neutrophil elastase-like proteases as observed in PLS patients can be achieved by pharmacological inhibition of bone marrow CatC. Such a transitory inhibition of CatC might thus help to rebalance the protease load during chronic inflammatory diseases, which opens new perspectives for therapeutic applications in humans., (Copyright © 2017 Elsevier Inc. All rights reserved.)
- Published
- 2017
- Full Text
- View/download PDF