1. Role of collecting duct principal cell NOS1β in sodium and potassium homeostasis.
- Author
-
Hyndman KA, Isaeva E, Palygin O, Mendoza LD, Rodan AR, Staruschenko A, and Pollock JS
- Subjects
- Animals, CHO Cells, Cricetinae, Cricetulus, Ion Transport, Male, Mice, Mice, Knockout, Potassium Channels, Inwardly Rectifying genetics, Kcnj10 Channel, Homeostasis, Kidney Tubules, Collecting metabolism, Nitric Oxide Synthase Type I physiology, Potassium metabolism, Potassium Channels, Inwardly Rectifying metabolism, Sodium metabolism
- Abstract
The nitric oxide (NO)-generating enzyme, NO synthase-1β (NOS1β), is essential for sodium (Na
+ ) homeostasis and blood pressure control. We previously showed that collecting duct principal cell NOS1β is critical for inhibition of the epithelial sodium channel (ENaC) during high Na+ intake. Previous studies on freshly isolated cortical collecting ducts (CCD) demonstrated that exogenous NO promotes basolateral potassium (K+ ) conductance through basolateral channels, presumably Kir 4.1 (Kcnj10) and Kir 5.1 (Kcnj16). We, therefore, investigated the effects of NOS1β knockout on Kir 4.1/Kir 5.1 channel activity. Indeed, in CHO cells overexpressing NOS1β and Kir 4.1/Kir 5.1, the inhibition of NO signaling decreased channel activity. Male littermate control and principal cell NOS1β knockout mice (CDNOS1KO) on a 7-day, 4% NaCl diet (HSD) were used to detect changes in basolateral K+ conductance. We previously demonstrated that CDNOS1KO mice have high circulating aldosterone despite a high-salt diet and appropriately suppressed renin. We observed greater Kir 4.1 cortical abundance and significantly greater Kir 4.1/Kir 5.1 single-channel activity in the principal cells from CDNOS1KO mice. Moreover, blocking aldosterone action with in vivo spironolactone treatment resulted in lower Kir 4.1 abundance and greater plasma K+ in the CDNOS1KO mice compared to controls. Lowering K+ content in the HSD prevented the high aldosterone and greater plasma Na+ of CDNOS1KO mice and normalized Kir 4.1 abundance. We conclude that during chronic HSD, lack of NOS1β leads to increased plasma K+ , enhanced circulating aldosterone, and activation of ENaC and Kir 4.1/Kir 5.1 channels. Thus, principal cell NOS1β is required for the regulation of both Na+ and K+ by the kidney., (© 2021 The Authors. Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society.)- Published
- 2021
- Full Text
- View/download PDF