1. A guided-ion beam study of the hydrogen atom transfer reaction of state-selected N+2 with H2 at collision energies ranging from subthermal to 2 eV (c.m.).
- Author
-
Knott, W. J., Proch, D., Kompa, K. L., and Rose-Petruck, Ch.
- Subjects
- *
ION bombardment , *HYDROGEN , *ATOMS , *COLLISIONS (Physics) , *NITROGEN - Abstract
This article presents detailed internal and kinetic energy dependent cross sections and reaction rates for the hydrogen atom transfer processes N+2(X 2Σ+g, v+=0–4, J+=2)+H2→N2H++H, which were obtained under single-collision conditions in a guided-ion beam/scattering gas experiment. Preparation of ions in specific states relied on single-color excitation within a resonantly enhanced (2+1) multiphoton ionization scheme. The translational energy of the ions, Elab, was varied from 0.1 eV to approximately 30 eV. A small activation barrier impedes the reaction. Vibronic state preparation of the nitrogen ion is influential on the nature of the energy surface—N+2+H2 or H+2+N2—along which the H atom transfer proceeds. Calculations of model potential energy surfaces suggest that the reaction pathway must involve several exoergic and endoergic channels which open successively as the collision energy increases. A purely collision determined cross section—as would be evidenced by the E-1/2 dependence formulated in the Langevin–Gioumousis–Stevenson model—is observed only within a narrow window of kinetic energies. © 1995 American Institute of Physics. [ABSTRACT FROM AUTHOR]
- Published
- 1995
- Full Text
- View/download PDF