586 results on '"power-law fluid"'
Search Results
2. On flow of power-law fluids between adjacent surfaces: Why is it possible to derive a Reynolds-type equation for pressure-driven flow, but not for shear-driven flow?
- Author
-
Andreas Almqvist, Evgeniya Burtseva, Kumbakonam Rajagopal, and Peter Wall
- Subjects
Navier–Stokes equation ,Reynolds equation ,Poiseuille law ,Lower-dimensional model ,Power-law fluid ,Non-Newtonian fluid ,Engineering (General). Civil engineering (General) ,TA1-2040 - Abstract
Flows of incompressible Navier–Stokes (Newtonian) fluids between adjacent surfaces are encountered in numerous practical applications, such as seal leakage and bearing lubrication. In seals, the flow is primarily pressure-driven, whereas, in bearings, the dominating driving force is due to shear. The governing Navier–Stokes system of equations can be significantly simplified due to the small distance between the surfaces compared to their size. From the simplified system, it is possible to derive a single lower-dimensional equation, known as the Reynolds equation, which describes the pressure field. Once the pressure field is computed, it can be used to determine the velocity field. This computational algorithm is much simpler to implement than a direct numerical solution of the Navier–Stokes equations and is therefore widely employed by engineers. The primary objective of this article is to investigate the possibility of deriving a type of Reynolds equation also for non-Newtonian fluids, using the balance of linear momentum. By considering power-law fluids we demonstrate that it is not possible for shear-driven flows, whereas it is feasible for pressure-driven flows. Additionally, we demonstrate that in the full 3D model, a normal stress boundary condition at the inlet/outlet implies a Dirichlet condition for the pressure in the Reynolds equation associated with pressure-driven flow. Furthermore, we establish that a Dirichlet condition for the velocity at the inlet/outlet in the 3D model results in a Neumann condition for the pressure in the Reynolds equation.
- Published
- 2023
- Full Text
- View/download PDF
3. Finite Element Computational Modelling of Non-Newtonian Fluids Using Anisotropic Mesh Adaptivity
- Author
-
Singh, Neeraj Kr., Bhutani, Gaurav, Cavas-Martínez, Francisco, Series Editor, Chaari, Fakher, Series Editor, Gherardini, Francesco, Series Editor, Haddar, Mohamed, Series Editor, Ivanov, Vitalii, Series Editor, Kwon, Young W., Series Editor, Trojanowska, Justyna, Series Editor, Saha, Sandip Kumar, editor, and Mukherjee, Mousumi, editor
- Published
- 2021
- Full Text
- View/download PDF
4. Flow of a Self-Similar Non-Newtonian Fluid Using Fractal Dimensions.
- Author
-
Bouchendouka, Abdellah, Fellah, Zine El Abiddine, Larbi, Zakaria, Ongwen, Nicholas O., Ogam, Erick, Fellah, Mohamed, and Depollier, Claude
- Subjects
- *
NON-Newtonian flow (Fluid dynamics) , *FRACTAL dimensions , *PSEUDOPLASTIC fluids , *NON-Newtonian fluids , *PIPE flow , *FLUID flow , *NEWTONIAN fluids , *VECTOR calculus - Abstract
In this paper, the study of the fully developed flow of a self-similar (fractal) power-law fluid is presented. The rheological way of behaving of the fluid is modeled utilizing the Ostwald–de Waele relationship (covering shear-thinning, Newtonian and shear-thickening fluids). A self-similar (fractal) fluid is depicted as a continuum in a noninteger dimensional space. Involving vector calculus for the instance of a noninteger dimensional space, we determine an analytical solution of the Cauchy equation for the instance of a non-Newtonian self-similar fluid flow in a cylindrical pipe. The plot of the velocity profile obtained shows that the rheological behavior of a non-Newtonian power-law fluid is essentially impacted by its self-similar structure. A self-similar shear thinning fluid and a self-similar Newtonian fluid take on a shear-thickening way of behaving, and a self-similar shear-thickening fluid becomes more shear thickening. This approach has many useful applications in industry, for the investigation of blood flow and fractal fluid hydrology. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
5. On the stability and accuracy of TRT Lattice-Boltzmann method for non-Newtonian Ostwald-de Waele fluid flows.
- Author
-
Bresolin, C.S. and Fiorot, G.H.
- Subjects
- *
MACH number , *POISEUILLE flow , *PROPERTIES of fluids , *FLUID flow , *LATTICE Boltzmann methods - Abstract
This paper brings a numerical analysis of the TRT modeling for the Lattice-Boltzmann method when solving flow for dilatant and pseudoplastic power-law fluids. Firstly, the method was reviewed to describe the required simulation parameters and the numerical methodology. Secondly, a mathematical procedure was performed to identify the characteristic relaxation frequency as a function of both flow and fluid properties and to work as a guide parameter for LBM operation. Then, a simple shearing Poiseuille flow was employed so its characteristic shear rate could be calculated as a function of fluid properties, given the flow was characterized by the Reynolds and Mach numbers. For this test case, convergence was then explored for a broad range of parameters, and its non-monotonic dependency on the Mach number for a given convergence criterion was shown. Then, stability maps were constructed based on the characteristic relaxation frequency, which showed a strong dependency between consistency and flow index so the simulation could converge. This was explored against the results from the converged tests, which pointed out the usefulness of the characteristic relaxation frequency in predicting stable solutions. Finally, quantitatively, it was shown that for this power-law fluid flow, the | | L 2 | | relative error depends on the Mach number to the power of 2 (2 − n) being now a function of the flow index, extending the previously reported dependency of the Mach number to the power of 2 for plane-Poiseuille flow. [Display omitted] • The numerical convergence was found to depend on M a , R e , k / ρ , and n , as they control the local relaxation frequency. • Non-Newtonian fluid parameters and flow configuration should be systematically controlled to guarantee stability: A pseudoplastic (dilatant) fluid flow could only be reproduced for flow with M a above (below) a specific limit. • The accuracy of numerical solutions specifically for Poiseuille flows of power-law fluids can be estimated by the formula | | L 2 | | = f (M a 2 (2 − n) ) for n in the range [0.5, 1.25]. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
6. Analysis of a Two-Fluid Taylor–Couette Flow with One Non-Newtonian Fluid.
- Author
-
Lienstromberg, Christina, Pernas-Castaño, Tania, and Velázquez, Juan J. L.
- Abstract
We study the dynamic behaviour of two viscous fluid films confined between two concentric cylinders rotating at a small relative velocity. It is assumed that the fluids are immiscible and that the volume of the outer fluid film is large compared to the volume of the inner one. Moreover, while the outer fluid is considered to have constant viscosity, the rheological behaviour of the inner thin film is determined by a strain-dependent power-law. Starting from a Navier–Stokes system, we formally derive evolution equations for the interface separating the two fluids. Two competing effects drive the dynamics of the interface, namely the surface tension and the shear stresses induced by the rotation of the cylinders. When the two effects are comparable, the solutions behave, for large times, as in the Newtonian regime. We also study the regime in which the surface tension effects dominate the stresses induced by the rotation of the cylinders. In this case, we prove local existence of positive weak solutions both for shear-thinning and shear-thickening fluids. In the latter case, we show that interfaces which are initially close to a circle converge to a circle in finite time and keep that shape for later times. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
7. Numerical simulation on the effects of power-law fluidic properties on the suspension rheology
- Author
-
Miho TANAKA, Tomohiro FUKUI, Misa KAWAGUCHI, and Koji MORINISHI
- Subjects
effective viscosity ,einstein’s viscosity formula ,non-newtonian fluid ,power-law fluid ,rheology ,two-way coupling ,Science (General) ,Q1-390 ,Technology - Abstract
It is important to understand the rheology of suspensions because it has a wide range of relevance from biological to industrial fields. The rheology of suspensions is still unclear due to complexity of various factors. Among the factors that determine the rheological properties, we focused on the spatial arrangement of particles and solvent properties of the suspension. We investigated effects of the power-law fluidic properties of the solvent of suspension on the relative and intrinsic viscosities. Furthermore, we investigated the effect of Reynolds number on the rheology of the suspension. We performed a numerical simulation of pressure-driven suspension flows in 2D. The suspension had different solvents properties depends on the power-law model. The bulk flow was simulated by using the lattice Boltzmann method. The power-law model was used to represent the flow properties of the solvent. The particle shape was described on the Cartesian grid using the virtual flux method. The relative and intrinsic viscosities of the suspensions were discussed by property changes in the suspension rheology such as shear-thinning, Newtonian, and shear-thickening. The results showed that the higher power-law index of the solvent caused higher relative and intrinsic viscosities. Furthermore, Reynolds number had little influence on the relative and intrinsic viscosities of the suspension when the Reynolds number was under Re = 12.
- Published
- 2021
- Full Text
- View/download PDF
8. Flow of a Self-Similar Non-Newtonian Fluid Using Fractal Dimensions
- Author
-
Abdellah Bouchendouka, Zine El Abiddine Fellah, Zakaria Larbi, Nicholas O. Ongwen, Erick Ogam, Mohamed Fellah, and Claude Depollier
- Subjects
fractal dimensions ,power-law fluid ,non-Newtonian fluid ,self-similar fluid ,noninteger dimensional space ,Thermodynamics ,QC310.15-319 ,Mathematics ,QA1-939 ,Analysis ,QA299.6-433 - Abstract
In this paper, the study of the fully developed flow of a self-similar (fractal) power-law fluid is presented. The rheological way of behaving of the fluid is modeled utilizing the Ostwald–de Waele relationship (covering shear-thinning, Newtonian and shear-thickening fluids). A self-similar (fractal) fluid is depicted as a continuum in a noninteger dimensional space. Involving vector calculus for the instance of a noninteger dimensional space, we determine an analytical solution of the Cauchy equation for the instance of a non-Newtonian self-similar fluid flow in a cylindrical pipe. The plot of the velocity profile obtained shows that the rheological behavior of a non-Newtonian power-law fluid is essentially impacted by its self-similar structure. A self-similar shear thinning fluid and a self-similar Newtonian fluid take on a shear-thickening way of behaving, and a self-similar shear-thickening fluid becomes more shear thickening. This approach has many useful applications in industry, for the investigation of blood flow and fractal fluid hydrology.
- Published
- 2022
- Full Text
- View/download PDF
9. Flow and heat transfer of non-Newtonian power-law fluids over a stretching surface with variable thermal conductivity
- Author
-
Yang, Meng and Lin, Yanhai
- Published
- 2019
- Full Text
- View/download PDF
10. Two dimensional non newtonian boundary layer flow over a flat plate with power law fluid with suction/injection through porous media
- Author
-
Saibanna, Balbheem
- Published
- 2018
11. Numerical study of bifurcation blood flows using three different non-Newtonian constitutive models.
- Author
-
Abugattas, C., Aguirre, A., Castillo, E., and Cruchaga, M.
- Subjects
- *
NON-Newtonian flow (Fluid dynamics) , *BLOOD flow , *DIASTOLE (Cardiac cycle) , *NON-Newtonian fluids , *CAROTID artery , *FLUID flow ,CAROTID artery stenosis - Abstract
• A VMS finite element formulation is used to solve 3D non-linear problems. • Hemodynamics in carotid artery bifurcations under three different conditions are studied. • Blood is modeled using three non-Newtonian models: Cross, Carreau-Yasuda, and power-law equations. • Flow rates through each part of the carotid artery are measured. • Wall shear stresses regions are classified according to their magnitude. In this work, a variational multiscale finite element formulation is used to study bifurcation flows of non-Newtonian fluids, using a representative simplified Carotid Artery geometry. In particular, the flow pattern and wall shear stress (WSS) computed using power-law, Cross, and Carreau–Yasuda models, are assessed. First, the formulation is validated by contrasting simulations of a benchmark test for bifurcation flows reported in the literature. After that, a study of blood flow through the carotid artery is presented. Hemodynamics conditions aimed to describe the flow behavior from diastole to systole of the cardiac cycle for healthy arteries and two specific conditions (60% carotid stenosis due to atherosclerosis and 20% increased bifurcation angle due to aging), are specifically analyzed. For each condition, the hemodynamics present different velocity fields that lead to distinctive distribution of WSS enable us to classified three regions, depending on their magnitude: low-WSS, medium-WSS and high-WSS. Results show that power-law flows predict lower wall shear stresses, especially in sections where geometry concentrates stresses, compared to those predicted using Cross and Carreau–Yasuda models. Overall, low-WSS are usually present in zones where stenosis develops even in healthy arteries, however, both geometries lead to a decrease of WSS magnitude in low-WSS regions, increasing the risk factor associated with plaque building. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
12. Numerical investigation of steady-state laminar natural convection of power-law fluids in square cross-sectioned cylindrical annular cavity with differentially-heated vertical walls
- Author
-
Sahin Yigit, Timothy Graham, Robert J Poole, and Nilanjan Chakraborty
- Published
- 2016
- Full Text
- View/download PDF
13. Performance analysis of thermoelectric generator mounted chaotic channel by using non-Newtonian nanofluid and modeling with efficient computational methods
- Author
-
Fatih Selimefendigil, Hakan F. Oztop, Lioua Kolsi, and Mohamed Omri
- Subjects
Dilatant ,Materials science ,Shear thinning ,Power-law fluid ,General Engineering ,Mechanics ,Nanofluid ,Engineering (General). Civil engineering (General) ,Power law ,Non-Newtonian fluid ,Fsinite element method ,Thermoelectric effect ,Thermoelectric conversion ,Newtonian fluid ,Power law fluid ,Chaotic channels ,TA1-2040 - Abstract
Performance features of a thermoelectric system mounted in a chaotic channel with non-Newtonian power law fluid are numerically explored with finite element method. The analysis is performed for different values of Re number of the hot and cold fluid streams ( 250 ⩽ Re ⩽ 1000 ), power law indices ( 0.75 ⩽ n ⩽ 1.25 ) and solid volume fraction of alumina ( 0 ⩽ ϕ ⩽ 4 % ) in water. It is observed that the fluid type with different power law indices significantly affected the electric potential variations and power generation of the thermoelectric system. Impacts of Re number on the power generation enhancement amount depends upon the power law index. The power rises by about 123.78 % , 94.13 % and 52.30 % at the highest Re for different power law index combinations of (0.75,0.75), (0.75,12.5) and (1.25,1.25), respectively. Thermoelectric power reduces by about 39.71 % for shear thinning fluids in both channels while it rises by about 43.48 % for shear thickening fluids in chaotic channels. The potential of using nanofluids is more when both channels contain shear thinning fluids. Nanofluids rise the power of thermoelectric system by about 31 % , 29 % and 28 % for the case when the hot side fluid is shear thinning, Newtonian and shear thickening fluid types while the cold side chaotic channel is shear thinning. When constant and varying interface temperature configurations are compared, there is at most 3 % variations in the generated power while the trends in the curves for varying parameters are similar. The computational cost of constant interface temperature and computations only in the thermoelectric domains are much cheaper as compared to high fidelity coupled computational fluid dynamics simulations. The temperature field in the whole computational domain is approximated by using POD based approach with nine modes. A polynomial type regression model is used for POD-modal coefficients while fast and accurate results for interface temperatures are obtained.
- Published
- 2022
14. Condition for the Incipient Motion of Non-Cohesive Particles Due to Laminar Flows of Power-Law Fluids in Closed Conduits
- Author
-
Aldo Tamburrino and Cristóbal Traslaviña
- Subjects
incipient motion ,power-law fluid ,closed conduit ,non-Newtonian fluid ,Galileo number ,laminar flow ,Hydraulic engineering ,TC1-978 ,Water supply for domestic and industrial purposes ,TD201-500 - Abstract
The results of an experimental study on the condition of incipient transport of non-cohesive particles due to the flow of a power-law fluid in a rectangular pipe are presented in this article. The pipe can change its inclination, and experiments were carried out with positive and negative slopes. From a dimensional analysis, the parameters that define the condition of incipient motion were found and validated with experimental data. Thus, the threshold condition is well defined by a particle Reynolds number and a Galileo number, properly modified to take into account the power-law rheology of the fluid. The experimental data are also presented in a standard Shields diagram, including the data obtained in other studies carried out in open-channel laminar flows of Newtonian and power-law fluids.
- Published
- 2020
- Full Text
- View/download PDF
15. A Stabilized Finite Element Formulation of Non-Newtonian Fluid Model of Blood Flow in A Bifurcated Channel with Overlapping Stenosis
- Author
-
Zuhaila Ismail, Norliza Mohd Zain, and Peter Rex Johnston
- Subjects
Physics::Fluid Dynamics ,Fluid Flow and Transfer Processes ,Power-law fluid ,Quantitative Biology::Tissues and Organs ,Multiphysics ,Newtonian fluid ,Laminar flow ,Mechanics ,Vortex shedding ,Galerkin method ,Finite element method ,Non-Newtonian fluid ,Mathematics - Abstract
A stabilized form of finite element formulation known as the Galerkin least-squares (GLS) method is implemented here for solving the two-dimensional incompressible non-Newtonian fluid model of blood flow in a diseased artery. The modelling for this type of flow is based on the conservation of mass and momentum equations, coupled with the generalised Newtonian liquid (GNL) constitutive equation characterized by the generalised power law (GPL) model. The flow of blood in this present study are assumed as steady, laminar and fully developed. The finite element algorithms considered herein are first solved for the Newtonian fluid in a straight artery with a bell shaped stenosis for validation purposes. As the efficiency and validity of the proposed algorithms are obtained through comparison with the findings from existing literature and COMSOL Multiphysics 5.2 software. Then, the algorithms are being implemented to the generalised power law fluid model of blood flow in a bifurcated artery with overlapping stenosis located at the parent's arterial lumen. The numerical results illustrate the arising of distinct sizes of vortex shedding downstream of the stenotic region for each generalised power law index.
- Published
- 2021
16. Asymptotic solution for large Prandtl number for the flow of a power-law fluid through a porous medium over a rotating disk with heat transfer and viscous dissipation
- Author
-
Hazem Ali Attia, Karem Mahmoud Ewis, and Abdeen Mostafa A.M.
- Subjects
rotating disk ,porous medium ,non-Newtonian fluid ,power-law fluid ,heat transfer ,viscous dissipation ,asymptotic solution ,Science - Abstract
The steady flow with heat transfer through a porous medium of a non- Newtonian power-law fluid due to the uniform rotation of a disk of infinite extent is studied. The porous medium is assumed to obey Darcy's model which accounts for the drag exerted linearly by the porous medium on the steady flow. Von Karman similarity transformation is used to transform the governing boundary layer partial differential equations to ordinary differential equations. Therefore, the resulting momentum equations as well as the energy equations including the viscous dissipation term are solved asymptotically for large values of the porosity parameter and Prandtl number.
- Published
- 2015
- Full Text
- View/download PDF
17. Flow Modes of Non-Newtonian Fluids with Power-Law Rheology in a T-Shaped Micromixer.
- Author
-
Lobasov, A. S., Minakov, A. V., and Rudyak, V. Ya.
- Subjects
- *
NON-Newtonian fluids , *REYNOLDS number , *PRESSURE drop (Fluid dynamics) , *FLUIDS , *POWER law (Mathematics) - Abstract
The flow and mixing modes of non-Newtonian fluids in a T-shaped micromixer were studied by numerical simulation in the range of Reynolds numbers 1-250. The non-Newtonian fluid was described using the power-law model. The exponent n was varied: 0.3, 0.5, and 0.8. The mixing efficiency and pressure drop in the channel were correlated with the exponent n and Reynolds number. The exponent n was shown to significantly affect the flow structure before and especially after the transition from symmetric to asymmetric flow modes. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
18. Turbulent Flow and Heat Transfer Characteristics of Non-Newtonian Impinging Jets on a Flat Plate
- Author
-
Sudip Simlandi, Vedant Tiwari, and Sandip Sarkar
- Subjects
0209 industrial biotechnology ,Jet (fluid) ,Materials science ,Power-law fluid ,Turbulence ,020209 energy ,Mechanical Engineering ,Aerospace Engineering ,Ocean Engineering ,02 engineering and technology ,Mechanics ,Nusselt number ,Industrial and Manufacturing Engineering ,Non-Newtonian fluid ,Physics::Fluid Dynamics ,020901 industrial engineering & automation ,Heat flux ,Heat transfer ,0202 electrical engineering, electronic engineering, information engineering ,Newtonian fluid - Abstract
In the present work, a numerical analysis of non-Newtonian impinging jets on a flat plate subjected to a constant heat flux is carried out under turbulent flow conditions. By employing the power-law constitutive model to describe the jet’s non-Newtonian behavior, simulations have been performed for two (2D) and three-dimensional (3D) jet flow conditions. For turbulence simulation, SST- $$k\omega$$ turbulence model has been used coupled with continuity and energy equations. Dimensional results have been obtained by varying the inflow conditions 0.5–1.4 m/s and at a constant heat flux of 5000 W/m2. To instill the influences of shear thinning, Newtonian, and shear-thickening fluids, the range of power-law indices (n) is varied from 0.6 to 1.6. The results of the simulations infer that the pseudoplastics fluids are more efficient than Newtonian and dilatant fluids. Increasing power law shows efficacy of the fluids to cool the surface decreases as is observed by the average values of the Nusselt number on the target. It is found that there is a small difference in the final average temperature of the plate after cooling with different fluids, but that owes it to the small heat flux used in the present analysis. It is observed that the higher the velocity of the jet, the better is the cooling. Finally, the energy-saving capabilities of the jets are characterized by altering the rheological characteristics of the jets.
- Published
- 2021
19. Lift, drag and torque on a rotating sphere in a stream of non-Newtonian power-law fluid
- Author
-
Asterios Pantokratoras
- Subjects
Physics ,Drag coefficient ,Lift coefficient ,010304 chemical physics ,Power-law fluid ,Reynolds number ,Mechanics ,Condensed Matter Physics ,Rotation ,01 natural sciences ,Non-Newtonian fluid ,010305 fluids & plasmas ,Lift (force) ,symbols.namesake ,Drag ,0103 physical sciences ,symbols ,General Materials Science - Abstract
The flow of a non-Newtonian, power-law fluid, directed normally to a rotating sphere is considered in the present paper. The problem is investigated by means of a three-dimensional numerical simulation with the SIMPLE algorithm. The investigation covers the power-law index from 0.2 up to 2, rotation rate from 0.1 up to 3 and Reynolds number from 0.1 up to 100. The following general rules are valid. The lift coefficient increases with increasing the rotation rate. At high Re numbers the drag coefficient increases with the power-law index. At high Re numbers the torque coefficient increases with the power-law index and with the rotation rate, whereas the torque coefficient reduces as the Reynolds number increases. In addition, there are some special cases which are analyzed in the text.
- Published
- 2021
20. Laminar natural convection of non-Newtonian power-law fluid in an eccentric annulus
- Author
-
Ahmed Dellil Zineddine, Mohamed Bouzit, and Oussama Benhizia
- Subjects
Convection ,Physics ,ansys cfx ,Natural convection ,Power-law fluid ,Renewable Energy, Sustainability and the Environment ,power law model ,lcsh:Mechanical engineering and machinery ,nusselt number ,natural convection ,Mechanics ,Thermal conduction ,Nusselt number ,Power law ,Non-Newtonian fluid ,Heat transfer ,lcsh:TJ1-1570 ,eccentric annulus ,non-newtonian fluid - Abstract
This work is about studying the natural convection of two-dimensional steady state non-Newtonian power law fluid numerically. The inner cylinder was put eccentrically into the outer one. The cylinders are held at constant temperatures with the inner one heated isothermally at temperature Th and the outer one cooled isothermally at temperature Tc (Th>Tc). The simulations have been taken for the parameters 103?Ra?105, 10?Pr?103, 0.6?n?1.4, 0???0.9 and an inclination angle ? from 0? up to 90?. The average Nusselt numbers for the previous parameters are obtained and discussed numerically. The results revealed that the average Nusselt number has the highest values when n=0.6, Ra=105 at ?=0 which is a signal for the large transfer herein and has the lowest values for n=1.4, Ra=103 at ?=90? which is a signal that the transfer is by conduction more than convection. Furthermore, the increasing of eccentricity causes an increase in the Nusselt number for all the cases. Finally, the best case where we can get the best heat transfer is at ? = 0, ?=0.9 among them all. The results have compared with some precedent works and showed good agreement.
- Published
- 2021
21. CONFINED AND UNCONFINED FLOW PAST A RIGID STATIONARY SPHERE ENCLOSED IN A RECTANGULAR CHANNEL FILLED WITH NON-NEWTONIAN POWER-LAW FLUID
- Author
-
Asterios Pantokratoras
- Subjects
Physics ,Power-law fluid ,Flow (mathematics) ,Drag ,Mechanics ,Non-Newtonian fluid ,Communication channel - Published
- 2021
22. FORCED CONVECTION HEAT TRANSFER FROM A HEATED ROTATING SPHERE IN A NON-NEWTONIAN, POWER-LAW FLUID
- Author
-
Asterios Pantokratoras
- Subjects
Physics ,Power-law fluid ,Forced convection heat transfer ,Mechanics ,Power law ,Non-Newtonian fluid ,General Environmental Science ,Forced convection - Published
- 2021
23. GPU accelerated simulations of three-dimensional flow of power-law fluids in a driven cube.
- Author
-
Jin, K., Vanka, S.P., Agarwal, R.K., and Thomas, B.G.
- Subjects
- *
NEWTONIAN fluids , *VISCOSITY , *REYNOLDS number , *GRAPHICS processing units , *POWER law (Mathematics) , *SIMULATION methods & models - Abstract
Newtonian fluid flow in two- and three-dimensional cavities with a moving wall has been studied extensively in a number of previous works. However, relatively a fewer number of studies have considered the motion of non-Newtonian fluids such as shear thinning and shear thickening power law fluids. In this paper, we have simulated the three-dimensional, non-Newtonian flow of a power law fluid in a cubic cavity driven by shear from the top wall. We have used an in-house developed fractional step code, implemented on a Graphics Processor Unit. Three Reynolds numbers have been studied with power law index set to 0.5, 1.0 and 1.5. The flow patterns, viscosity distributions and velocity profiles are presented for Reynolds numbers of 100, 400 and 1000. All three Reynolds numbers are found to yield steady state flows. Tabulated values of velocity are given for the nine cases studied, including the Newtonian cases. [ABSTRACT FROM PUBLISHER]
- Published
- 2017
- Full Text
- View/download PDF
24. Effect of Power Law Fluids Rheology on The Structure of Cuttings and Drilling Fluid Flow in Wellbore Eccentric Annulus (Dept.M)
- Author
-
Mohamed Sakr, M. A. Tolba, M. A. Badawy, and Ahmed Abd El-Razik Ahmed Sultan
- Subjects
Power-law fluid ,Physics::Instrumentation and Detectors ,Turbulence ,Annulus (oil well) ,General Engineering ,Drill pipe ,Mechanics ,Non-Newtonian fluid ,Physics::Geophysics ,Physics::Fluid Dynamics ,Viscosity ,Drilling fluid ,General Earth and Planetary Sciences ,Two-phase flow ,Geology ,General Environmental Science - Abstract
Two phase flow of drilling fluids and cuttings in The eccentric annulus between The drill hole and drill pipe is studied. The effect of drilling fluids rheological parameters upon flow structure using The power law rheological model is investigated. axial velocity distribution of both drilling fluids and cutting are examined in The presence of drill pipe rotation. cuttings volume fraction distributions as well as flow contours are considered. numerical simulation of The two phase turbulent flow is carried out using The realizable k-e model using The computational fluid dynamics software fluent 6.3.26. The eccentric annulus has inner and outer diameters of 5 cm and 10 cm and 50% eccentricity. The results show That The velocity distributions of both drilling fluids and cuttings, as well as, drilled cuttings volumetric fraction distribution are strongly affected by The rheology of The drilling fluid. It has been verified that power law fluid consistency Kp and flow index (n) are significant parameters in determining The local flow structure in The different regions of The annulus. increasing fluids viscosity reduces The difference between The velocity distributions of drilling fluid and that of cuttings. The effect is more pronounced for The flow with large size cuttings.
- Published
- 2020
25. Power-law fluid flow in driven enclosures with undulation using MRT-lattice Boltzmann method
- Author
-
Manju Bisht and Dhiraj V. Patil
- Subjects
010304 chemical physics ,Power-law fluid ,Lattice Boltzmann methods ,Enclosure ,Reynolds number ,Mechanics ,01 natural sciences ,Non-Newtonian fluid ,010305 fluids & plasmas ,Physics::Fluid Dynamics ,Computational Mathematics ,symbols.namesake ,Viscosity ,Classical mechanics ,Computational Theory and Mathematics ,Flow (mathematics) ,Modeling and Simulation ,0103 physical sciences ,symbols ,Fluid dynamics ,Mathematics - Abstract
In this article, the flow of non-Newtonian fluid (which is represented by the power-law model) in two-dimensional (2D) driven enclosures is studied. The enclosure consists of regular, rectangular shaped undulations on the bottom wall. Multiple-Relaxation time (MRT) collision model for the lattice Boltzmann equation method (LBM) is employed. First, numerical validation is performed by comparing the MRT-LBM results of power-law fluid flow inside the wall-driven square enclosure (no undulation) and flow inside diagonally flipped L-shaped enclosure with the literature. The strain rate profiles for square enclosure without undulations are compared using various equations available for strain rate calculation in the LBM literature. Further, the effect of different values of the non-hydrodynamic relaxation parameters on the flow is examined. Then, for the undulated enclosures, flow features and eddy dynamics are analyzed and discussed for the variations in the power-law index, n , to represent shear-thinning and shear thickening fluids. The effects of various parameters such as Reynolds numbers, wall undulation heights and wavelength of undulations on the power-law fluid flow are analyzed. Also, the variation of viscosity with spatial location for steady-state flow and total kinetic energy within the computational domain are presented for various values of power-law index.
- Published
- 2020
26. Magnetohydrodynamic free convection of non-Newtonian power-law fluids over a uniformly heated horizontal plate
- Author
-
Alireza Bahmani and Hadi Kargarsharifabad
- Subjects
power-law fluid ,Natural convection ,Materials science ,Power-law fluid ,similarity solution ,Renewable Energy, Sustainability and the Environment ,mhd ,lcsh:Mechanical engineering and machinery ,020209 energy ,Prandtl number ,horizontal plate ,02 engineering and technology ,Mechanics ,Hartmann number ,Nusselt number ,Non-Newtonian fluid ,Physics::Fluid Dynamics ,symbols.namesake ,Heat flux ,Parasitic drag ,0202 electrical engineering, electronic engineering, information engineering ,symbols ,natural-convection ,lcsh:TJ1-1570 ,non-newtonian - Abstract
The MHD free convection flow of non-Newtonian power-law fluids over a horizontal plate subjected to a constant heat flux is studied. The results are presented for various values of the three influential parameters, i. e. the generalized Hart?mann number, the generalized Prandtl number, and the non-Newtonian power-law viscosity index. Increasing the Hartmann number increases the thermal boundary-layer thickness and the surface temperature and consequently decreases the wall skin friction and Nusselt number. A lower generalized Prandtl number results in a larger skin friction coefficient and higher wall temperature as well as thicker thermal boundary-layer. The viscosity index is predicted to influence the flow conditions depending on the value of generalized Hartmann number. At high generalized Prandtl number numbers, by decreasing non-Newtonian power-law index, the wall skin friction, temperature scale, and thermal boundary-layer thickness are increased and the Nusselt number is decreased, while the opposite trend is observed for low generalized Prandtl number. A general correlation for the Nusselt number is derived using the numerical results
- Published
- 2020
27. An Exact Solution for Power-Law Fluids in a Slit Microchannel with Different Zeta Potentials under Electroosmotic Forces
- Author
-
Du-Soon Choi, Sungchan Yun, and WooSeok Choi
- Subjects
Electroosmosis ,Power-law fluid ,Non-Newtonian fluid ,Asymmetric zeta potential ,Mechanical engineering and machinery ,TJ1-1570 - Abstract
Electroosmotic flow (EOF) is one of the most important techniques in a microfluidic system. Many microfluidic devices are made from a combination of different materials, and thus asymmetric electrochemical boundary conditions should be applied for the reasonable analysis of the EOF. In this study, the EOF of power-law fluids in a slit microchannel with different zeta potentials at the top and bottom walls are studied analytically. The flow is assumed to be steady, fully developed, and unidirectional with no applied pressure. The continuity equation, the Cauchy momentum equation, and the linearized Poisson-Boltzmann equation are solved for the velocity field. The exact solutions of the velocity distribution are obtained in terms of the Appell’s first hypergeometric functions. The velocity distributions are investigated and discussed as a function of the fluid behavior index, Debye length, and the difference in the zeta potential between the top and bottom.
- Published
- 2018
- Full Text
- View/download PDF
28. Quasi‐Newtonian Approach determination of velocity profile for the fully developed axial power law fluid flow in concentric annuli
- Author
-
Ayşe Sarımeşeli Paçacı, Teymuraz Abbasov, and Hatice Bilgili
- Subjects
Physics ,Pressure drop ,Axial compressor ,Flow (mathematics) ,Power-law fluid ,Renewable Energy, Sustainability and the Environment ,General Chemical Engineering ,Newtonian fluid ,Mechanics ,Concentric ,Waste Management and Disposal ,Power law ,Non-Newtonian fluid - Published
- 2021
29. Natural convection from a vertical plate immersed in a power-law fluid saturated non-Darcy porous medium with viscous dissipation and Soret effects.
- Author
-
Khidir, Ahmed, Narayana, M., Sibanda, P., and Murthy, P.
- Abstract
In this work, we study the viscous dissipation and thermal-diffusion effects on natural convection from a vertical plate embedded in a fluid saturated non-Darcy porous medium. The non-Newtonian behaviour of fluid is characterized by the generalized power-law model. The governing partial differential equations are transformed into a system of ordinary differential equations using a local non-similarity solution and the resulting boundary value problem is solved using a novel successive linearisation method (SLM). The accuracy of the SLM has been established by comparing the results with the shooting technique. The effects of physical parameters on heat and mass transfer coefficients for the convective motion of the power-law liquid are presented both qualitatively and quantitatively. The results show that the Nusselt number is reduced by viscous dissipation and enhanced by the Soret number but the Sherwood number increases with viscous dissipation and decreases with the Soret number. An increasing viscosity enhances heat and mass transfer coefficients in both cases of aiding buoyancy and opposing buoyancy. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
30. Lower-Dimensional Nonlinear Brinkman’s Law for Non-Newtonian Flows in a Thin Porous Medium
- Author
-
María Anguiano and Francisco Javier Suárez-Grau
- Subjects
Physics::Fluid Dynamics ,Nonlinear system ,Power-law fluid ,Physics::Instrumentation and Detectors ,General Mathematics ,Law ,Bounded function ,Compressibility ,Porous medium ,Power law ,Homogenization (chemistry) ,Non-Newtonian fluid ,Mathematics - Abstract
In this paper, we study the stationary incompressible power law fluid flow in a thin porous medium. The media under consideration is a bounded perforated 3D domain confined between two parallel plates, where the distance between the plates is very small. The perforation consists in an array solid cylinders, which connect the plates in perpendicular direction, distributed periodically with diameters of small size compared to the period. For a specific choice of the thickness of the domain, we found that the homogenization of the power law Stokes system results a lower-dimensional nonlinear Brinkman type law.
- Published
- 2021
31. Augmentation of Pure Mixed Convection Heat Transfer in a Non-Newtonian Power-Law Fluid Filled Lid-Driven Trapezoidal Cavity With Double Rotating Cylinders
- Author
-
Enamul Hasan Rozin, Sudipta Saha, Mohammad Mamun, Hasib Ahmed Prince, and Didarul Ahasan Redwan
- Subjects
Materials science ,Power-law fluid ,Mechanical Engineering ,Reynolds number ,Mechanics ,Condensed Matter Physics ,01 natural sciences ,Non-Newtonian fluid ,010406 physical chemistry ,0104 chemical sciences ,Physics::Fluid Dynamics ,010101 applied mathematics ,symbols.namesake ,Mixed convection heat transfer ,Mechanics of Materials ,Combined forced and natural convection ,Heat transfer ,symbols ,General Materials Science ,Lid driven ,0101 mathematics - Abstract
In this study, a numerical investigation on mixed convection inside a trapezoidal cavity with a pair of rotating cylinders has been conducted. Three different power-law fluid indexes (n = 1.4, 1.0, and 0.6) have been considered to model different sets of non-Newtonian fluids. Four separate cases are considered based on the rotational orientation of the cylinders within the cavity. In the first two cases, the cylinders rotate in the same direction, i.e., both counterclockwise (CCW), and both clockwise (CW), whereas, in the other two cases, cylinders rotate in opposite directions (CW–CCW and CCW–CW). Simulations have been carried out over a broad range of Reynolds number (from 0.5 to 500) and angular speeds (a dimensionless value from 0 to 10). The average Nusselt number values at the isothermal hot inclined cavity surface are determined to evaluate heat transfer performance in various circumstances. Streamlines and isotherm contours are also plotted for a better understanding of the effects of different cases for various parameters on thermal and fluid flow fields. It is found that the Nusselt number varies nonlinearly with different angular speeds of the cylinders. The combined effect of the mixing induced by cylinder rotation and viscosity characteristics of the fluid dictates the heat transfer in the system. Predictions from the numerical investigation provide insights into the sets of key parametric configurations that have a dominant influence on the thermal performance of the lid-driven cavity with double rotating cylinders.
- Published
- 2021
32. Simplified lattice Boltzmann method for non‐Newtonian power‐law fluid flows
- Author
-
Zhen Chen and Chang Shu
- Subjects
Physics ,Viscosity ,Power-law fluid ,Mechanics of Materials ,Applied Mathematics ,Mechanical Engineering ,Computational Mechanics ,Lattice Boltzmann methods ,Mechanics ,Power law ,Non-Newtonian fluid ,Computer Science Applications - Published
- 2019
33. Convection in a Horizontal Porous Layer with Vertical Pressure Gradient Saturated by a Power-Law Fluid
- Author
-
Pedro Vayssiere Brandão, Michele Celli, Antonio Barletta, Leonardo S. de B. Alves, Pedro Vayssiere Brandao, Celli Michele, Barletta A., and Alves L.S.B.
- Subjects
Physics ,Asymptotic analysis ,Throughflow ,Convective heat transfer ,Power-law fluid ,General Chemical Engineering ,Non-Newtonian fluid ,0208 environmental biotechnology ,02 engineering and technology ,Mechanics ,010502 geochemistry & geophysics ,01 natural sciences ,Catalysis ,Modal stability analysi ,020801 environmental engineering ,Asymptotic analysi ,Shooting method ,Thermal convection ,Pressure gradient ,0105 earth and related environmental sciences ,Marginal stability - Abstract
The onset of convection in a porous layer saturated by a power-law fluid is here investigated. The walls are considered to be isothermal, isobaric and permeable in such a way that a vertical throughflow is described. The threshold for a buoyancy-driven cellular flow is investigated by means of a linear stability analysis. This study consists in introducing disturbances with small amplitude. The disturbances are plane waves, i.e. a normal modes stability analysis of the basic stationary solution is performed. The resulting problem is an ordinary differential equation eigenvalue problem which is solved numerically by coupling the Runge–Kutta method with the shooting method. Results are presented in the form of marginal stability curves and their critical points representing the values of the control parameters such that the growth rate of the disturbances is zero. It is found that, among roll disturbances, the most unstable modes are stationary and uniform with infinite wavelength. For this reason, an asymptotic analysis for vanishing wave numbers is carried out. The results of this asymptotic analysis are obtained analytically displaying a very good agreement with the numerical solution. It is found that vertical throughflow plays a destabilising role for pseudoplastic fluids and a stabilising role for dilatant fluids.
- Published
- 2019
34. Rheological characteristics of non-Newtonian GPTMS-SiO2 nanofluids
- Author
-
Won Suk Lee, Jeonghwan Lee, and Hochang Jang
- Subjects
Materials science ,Shear thinning ,Power-law fluid ,020209 energy ,General Chemical Engineering ,02 engineering and technology ,Apparent viscosity ,Condensed Matter Physics ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,Non-Newtonian fluid ,010406 physical chemistry ,0104 chemical sciences ,Shear rate ,Nanofluid ,Rheology ,0202 electrical engineering, electronic engineering, information engineering ,Particle ,Composite material - Abstract
GPTMS ((3-Glycidoxypropyl) trimethoxysilane)-SiO2 nanofluids have the ability to alter the wettability of a rock surface and high colloidal stability, therefore, they can be used as injection fluids to enhance oil recovery in high-salinity and high-temperature reservoirs. The purpose of this study is to prepare GPTMS-SiO2 nanofluids that are stable under extreme reservoir conditions and investigate their rheological characteristics. Nanofluids with nanoparticle concentrations of 0.1 to 3 wt% were prepared and dispersed in 10 wt% API (American Petroleum Institute) brine, which served as the base fluid. The apparent viscosity of the base fluid and GPTMS-SiO2 nanofluids was measured in the shear rate range 3.7 to 93.1 s−1 between the temperatures of 5 and 85 °C. It was observed to be a function of temperature, but remained constant with the increase in shear rate. On the other hand, the nanofluids exhibited pseudoplastic behavior (shear thinning). The apparent viscosity of the nanofluids tended to increase with decreasing temperature and increasing particle concentration. The consistency index and power law index of the power law fluid model are used for the analysis of the flow behavior of the nanofluids. The consistency indices of GPTMS-SiO2 nanofluids were observed to be well matched with the exponential function, and the power law indices showed high correlations with the specific particle concentration and temperature conditions. The results revealed that the rheological characteristics of GPTMS-SiO2 nanofluids are functions of particle concentration and temperature at specific conditions.
- Published
- 2019
35. Laminar Power-Law Fluid Flow in a T-Shaped Channel at Given Pressure Differences
- Author
-
O. A. D’yakova, G. R. Shrager, and E. I. Borzenko
- Subjects
Fluid Flow and Transfer Processes ,Physics ,Power-law fluid ,Mechanical Engineering ,General Physics and Astronomy ,Equations of motion ,Laminar flow ,Inflow ,Mechanics ,Non-Newtonian fluid ,Physics::Fluid Dynamics ,Flow (mathematics) ,Compressibility ,Outflow - Abstract
The steady laminar flow of an incompressible power-law fluid in a plane T-shaped channel is studied at given pressure differences between the inflow and outflow sections. A non-Newtonian fluid, whose rheological behavior is governed by the Ostwald—de Waele law is called the power-law fluid. The mathematical formulation of the problem includes the equations of motion and continuity. The no-slip condition is imposed on solid walls. The problem solution is obtained using a finite-difference method invoking the SIMPLE procedure. A parametric investigation of the kinematic and dynamic flow parameters is carried out for different values of the relevant parameters of the problem. The flow regime map is constructed for different pressure differences between the inflow and outflow boundaries and different nonlinearity exponents of the rheological model.
- Published
- 2019
36. Pore-scale simulation of non-Newtonian power-law fluid flow and forced convection in partially porous media: Thermal lattice Boltzmann method
- Author
-
A. Amiri Delouei, Mohsen Izadi, Rasul Mohebbi, Amin Jamali, and Abdulmajeed A. Mohamad
- Subjects
Statistics and Probability ,Materials science ,Power-law fluid ,Reynolds number ,Mechanics ,Condensed Matter Physics ,01 natural sciences ,Non-Newtonian fluid ,010305 fluids & plasmas ,Forced convection ,Physics::Fluid Dynamics ,symbols.namesake ,Flow (mathematics) ,0103 physical sciences ,symbols ,Newtonian fluid ,Fluid dynamics ,010306 general physics ,Porous medium - Abstract
In this paper, the two-dimensional forced convection heat transfer of non-Newtonian power-law fluid flow between two parallel plates filled with partially porous media is studied numerically using the thermal lattice Boltzmann method (TLBM). Shear-thinning (n=0.8), Newtonian (n=1.0), and shear-thickening (n=1.2) fluid are used to investigate the non-Newtonian behavior of power-law fluids. The porous media is prepared by the arrangement of circular obstacles. The effect of Reynolds numbers between 100
- Published
- 2019
37. Laminar natural convection of power-law fluids over a horizontal heated flat plate
- Author
-
Alireza Bahmani and Hadi Kargarsharifabad
- Subjects
Fluid Flow and Transfer Processes ,Natural convection ,Materials science ,Power-law fluid ,Laminar natural convection ,Integral solution ,Mechanics ,Condensed Matter Physics ,Similarity solution ,Nusselt number ,Power law ,Non-Newtonian fluid - Published
- 2019
38. Free convection around a slender paraboloid of non-Newtonian fluid in a porous medium
- Author
-
Rishi Raj Kairi
- Subjects
Physics ,Paraboloid ,Natural convection ,power-law fluid ,Power-law fluid ,Renewable Energy, Sustainability and the Environment ,free convection ,lcsh:Mechanical engineering and machinery ,non-darcy ,porous medium ,02 engineering and technology ,Heat transfer coefficient ,Mechanics ,021001 nanoscience & nanotechnology ,01 natural sciences ,Non-Newtonian fluid ,010406 physical chemistry ,0104 chemical sciences ,Physics::Fluid Dynamics ,radiation ,Thermal radiation ,Heat transfer ,lcsh:TJ1-1570 ,0210 nano-technology ,Porous medium - Abstract
This paper emphasizes the radiative heat transfer of non-Newtonian fluid on free convection around a slender paraboloid in a non-Darcy porous medium. The Ostwald-de Waele power-law representation is employed to express the non-Newto?nian behavior of fluid. Similarity analysis is applied to transform the set of non-dimensional PDE into set of ODE and then the resulting system of equations are solved by 4th order Runge-Kutta scheme with Shooting technique. The control of pertinent parameters on velocity, temperature and non-dimensional heat transfer rates are analyzed through graphical representation and explored in detail. It is evident that as the radius of the slender body increases the heat transfer coefficient decreases but the role of radiation on heat transfer rate getting reduced for all feasible values of the power-law index parameter.
- Published
- 2019
39. Electroosmotic Mixing of Non-Newtonian Fluid in a Microchannel with Obstacles and Zeta Potential Heterogeneity
- Author
-
Ibibia K. Dabipi, Diganta Dutta, Defu Cui, Willie Brown, Jiayue Shen, Lei Zhang, and Lanju Mei
- Subjects
Materials science ,Power-law fluid ,lcsh:Mechanical engineering and machinery ,02 engineering and technology ,01 natural sciences ,heterogeneous surface potential ,Article ,010305 fluids & plasmas ,Computer Science::Robotics ,Physics::Fluid Dynamics ,Electric field ,0103 physical sciences ,Zeta potential ,lcsh:TJ1-1570 ,Electrical and Electronic Engineering ,Mixing (physics) ,Microchannel ,power-law fluid ,Mechanical Engineering ,micromixing performance ,Mechanics ,021001 nanoscience & nanotechnology ,Non-Newtonian fluid ,Micromixing ,wall obstacle ,Control and Systems Engineering ,Obstacle ,electroosmotic flow ,0210 nano-technology - Abstract
This paper investigates the electroosmotic micromixing of non-Newtonian fluid in a microchannel with wall-mounted obstacles and surface potential heterogeneity on the obstacle surface. In the numerical simulation, the full model consisting of the Navier–Stokes equations and the Poisson–Nernst–Plank equations are solved for the electroosmotic fluid field, ion transport, and electric field, and the power law model is used to characterize the rheological behavior of the aqueous solution. The mixing performance is investigated under different parameters, such as electric double layer thickness, flow behavior index, obstacle surface zeta potential, obstacle dimension. Due to the zeta potential heterogeneity at the obstacle surface, vortical flow is formed near the obstacle surface, which can significantly improve the mixing efficiency. The results show that, the mixing efficiency can be improved by increasing the obstacle surface zeta potential, the flow behavior index, the obstacle height, the EDL thickness.
- Published
- 2021
40. Modelling of Power-Law Fluid Flow Inside a Piezoelectric Inkjet Printhead
- Author
-
Jianjun Wang, Ju Peng, and Jin Huang
- Subjects
Materials science ,Power-law fluid ,Constitutive equation ,Mechanical engineering ,Context (language use) ,02 engineering and technology ,Computational fluid dynamics ,lcsh:Chemical technology ,01 natural sciences ,Biochemistry ,Analytical Chemistry ,Physics::Fluid Dynamics ,Viscosity ,Fluid dynamics ,lcsh:TP1-1185 ,Electrical and Electronic Engineering ,Instrumentation ,power-law fluid ,business.industry ,Communication ,010401 analytical chemistry ,non-Newtonian fluids ,021001 nanoscience & nanotechnology ,Atomic and Molecular Physics, and Optics ,Non-Newtonian fluid ,Computer Science::Other ,0104 chemical sciences ,Condensed Matter::Soft Condensed Matter ,piezoelectric three-dimensional inkjet printing ,equivalent circuit model ,Equivalent circuit ,0210 nano-technology ,business - Abstract
Piezoelectric three-dimensional inkjet printing has been used to manufacture heterogeneous objects due to its high level of flexibility. The materials used are non-Newtonian inks with complex rheological properties, and their behavior in the context of inkjet printing has not been fully understood: for example, the fact that the shear-thinning viscosity affects the droplet generation. Therefore, a control strategy coping with shear-thinning behaviors is needed to ensure printing consistency. In this paper, a novel model-based approach is presented to describe the shear-thinning ink dynamics inside the piezoelectric inkjet printhead, which provides the basis to design the excitation parameters in a systematic way. The dynamic equation is simplified into a quasi-one-dimensional equation through the combination of the boundary layer theory and the constitutive equation of the power-law fluid, of which the viscosity is shear-thinning. Based on this, a nonlinear time-varying equivalent circuit model is presented to simulate the power-law fluid flow rate inside the tube. The feasibility and effectiveness of this model can be evaluated by comparing the results of computational fluid dynamics and the experimental results.
- Published
- 2021
41. Effect of Lewis number on mixed double-diffusive convection in shallow rectangular cavities with double-lid-driven boundaries filled with non-Newtonian power-law fluids
- Author
-
H. El Harfi, M. Lamsaadi, T. Makayssi, Youssef Tizakast, and Mourad Kaddiri
- Subjects
Physics::Fluid Dynamics ,Physics ,Power-law fluid ,Flow (mathematics) ,Combined forced and natural convection ,Enclosure ,Mechanics ,Power law ,Non-Newtonian fluid ,Lewis number ,Double diffusive convection - Abstract
This paper reports an analytical and numerical study of double-diffusive mixed convection in a non-Newtonian power-law fluid contained in a double lid driven horizontal rectangular enclosure submitted to uniform heat and mass fluxes along its short vertical sides, while the horizontal ones are insulated and impermeable. The first part from this study is devoted to the numerical solution of the governing equations, and the effect of the governing parameters, namely, flow behavior index for a power law fluid at the reference temperature and Lewis numbers, is examined. In the second part, an analytical solution, based on the parallel flow approximation in the case of a shallow cavity A ≫ 1, is proposed and a good agreement is found between the two types of solutions.
- Published
- 2021
42. Numerical investigation of steady-state laminar natural convection of power-law fluids in square cross-sectioned cylindrical annular cavity with differentially-heated vertical walls.
- Author
-
Yigit, Sahin, Graham, Timothy, Poole, Robert J., and Chakraborty, Nilanjan
- Subjects
- *
STEADY state conduction , *HEAT conduction , *COMPUTER simulation , *ELECTROMECHANICAL analogies , *MATHEMATICAL models - Abstract
Purpose – Numerical simulations have been used to analyse steady-state natural convection of non-Newtonian power-law fluids in a square cross-sectioned cylindrical annular cavity for differentially heated vertical walls for a range of different values of nominal Rayleigh number, nominal Prandtl number and power-law exponent (i.e. 103 < Ra < 106, 102 < Pr < 104 and 0.6 < n < 1.8). The paper aims to discuss these issues. Design/methodology/approach – Analysis is carried out using finite-volume based numerical simulations. Findings – Under the assumption of axisymmetry, it has been shown that the mean Nusselt number on the inner periphery Nui increases with decreasing (increasing) power-law exponent (nominal Rayleigh number) due to strengthening of thermal advection. However, Nui is observed to be essentially independent of nominal Prandtl number. It has been demonstrated that Nui decreases with increasing internal cylinder radius normalised by its height ri/L before asymptotically approaching the mean Nusselt number for a two-dimensional square enclosure in the limit ri/L→infinity. By contrast, the mean Nusselt number normalised by the corresponding Nusselt number for pure conductive transport (i.e. Nui/Nucond) increases with increasing ri/L. Originality/value – A correlation for Nui has been proposed based on scaling arguments, which satisfactorily captures the mean Nusselt number obtained from the steady-state axisymmetric simulations. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
43. Numerical Solution of Biomagnetic Power-Law Fluid Flow and Heat Transfer in a Channel
- Author
-
Norsarahaida Amin, Adrian Syah Halifi, and Sharidan Shafie
- Subjects
Dilatant ,Materials science ,Physics and Astronomy (miscellaneous) ,Power-law fluid ,MHD ,General Mathematics ,biomagnetic ,02 engineering and technology ,01 natural sciences ,non-Newtonian ,010305 fluids & plasmas ,Physics::Fluid Dynamics ,0103 physical sciences ,Computer Science (miscellaneous) ,Shear stress ,Shear thinning ,CIP ,lcsh:Mathematics ,Mechanics ,021001 nanoscience & nanotechnology ,lcsh:QA1-939 ,Non-Newtonian fluid ,Vortex ,power-law ,Chemistry (miscellaneous) ,Heat transfer ,Magnetohydrodynamics ,0210 nano-technology ,FHD - Abstract
The effect of non-Newtonian biomagnetic power-law fluid in a channel undergoing external localised magnetic fields is investigated. The governing equations are derived by considering both effects of Ferrohydrodynamics (FHD) and Magnetohydrodynamics (MHD). These governing equations are difficult to solve due to the inclusion of source term from magnetic equation and the nonlinearity of the power-law model. Numerical scheme of Constrained Interpolation Profile (CIP) is developed to solve the governing equations numerically. Extensive results carried out show that this method is efficient on studying the biomagnetic and non-Newtonian power-law flow. New results show that the inclusion of power-law model affects the vortex formation, skin friction and heat transfer parameter significantly. Regardless of the power-law index, the vortex formation length increases when Magnetic number increases. The effect of this vortex however decreases with the inclusion of power-law where in the shear thinning case, the arising vortex is more pronounced than in the shear thickening case. Furthermore, increasing of power-law index from shear thinning to shear thickening, decreases the wall shear stress and heat transfer parameters. However for high Magnetic number, the wall shear stress and heat transfer parameters increase especially near the location of the magnetic source. The results can be used as a guide on assessing the potential effects of radiofrequency fields (RF) from electromagnetic fields (EMF) exposure on blood vessel.
- Published
- 2020
44. Electroosmotic Flow of Non-Newtonian Fluid in Porous Polymer Membrane at High Zeta Potentials
- Author
-
Yukun Zeng, Shuyan Deng, Cuixiang Liang, and Mingying Li
- Subjects
Materials science ,Power-law fluid ,lcsh:Mechanical engineering and machinery ,02 engineering and technology ,Electrolyte ,01 natural sciences ,Article ,Quantitative Biology::Subcellular Processes ,Physics::Fluid Dynamics ,Fluid dynamics ,Zeta potential ,lcsh:TJ1-1570 ,Electrical and Electronic Engineering ,Shear thinning ,power-law fluid ,Mechanical Engineering ,010401 analytical chemistry ,porous polymer membrane ,Mechanics ,021001 nanoscience & nanotechnology ,Non-Newtonian fluid ,0104 chemical sciences ,Electroosmotic pump ,Flow (mathematics) ,Control and Systems Engineering ,electroosmotic flow ,0210 nano-technology - Abstract
To help in the efficient design of fluid flow in electroosmotic pumps, electroosmotic flow of non-Newtonian fluid through porous polymer membrane at high zeta potentials is studied by mainly evaluating the total flow rate at different physical parameters. Non-Newtonian fluid is represented by the power-law model and the porous polymer membrane is considered as arrays of straight cylindrical pores. The electroosmotic flow of non-Newtonian fluid through a single pore is studied by solving the complete Poisson&ndash, Boltzmann equation and the modified Cauchy momentum equation. Then assuming the pore size distribution on porous polymer membrane obeys Gaussian distribution, the performance of electroosmotic pump operating non-Newtonian fluid is evaluated by computing the total flow rate of electroosmotic flow through porous polymer membrane as a function of flow behavior index, geometric parameters of porous membrane, electrolyte concentration, applied voltage, and zeta potential. It is found that enhancing zeta potential and bulk concentration rather than the applied voltage can also significantly improve the total flow rate in porous polymer membrane, especially in the case of shear thinning fluid.
- Published
- 2020
45. Natural Convection Heat Transfer Performance of Non-Newtonian Power-Law Fluids Enclosed in Cavity With Complex-Wavy Surfaces.
- Author
-
Ching-Chang Cho, Chieh-Li Chen, Jenn-Jiang Hwang, and Cha'o-Kuang Chen
- Subjects
- *
FLUID dynamics , *HEAT transfer , *NATURAL heat convection , *NUSSELT number , *RAYLEIGH number - Abstract
Numerical simulations are performed to investigate the natural convection heat transfer performance of non-Newtonian power-law fluids in a cavity bounded by wavy vertical walls with different temperatures and flat horizontal walls under adiabatic conditions. The results show that for Rayleigh numbers greater than 10³, the mean Nusselt number has a significantly increase as the flow behavior index is decreased. Moreover, it is shown that in the convection-dominated regime, the mean Nusselt number increases with an increasing Rayleigh number, while in the conduction-dominated regime, the mean Nusselt number remains approximately constant. Finally, it is shown that for a given fluid, the heat transfer performance can be optimized via an appropriate tuning of the wavelength and amplitude of the wavy surface depending on the Rayleigh number. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
46. Blood Flow Analysis Inside A Stenotic Artery Using Power-Law Fluid Model
- Author
-
Rehena Nasrin, Amzad Hossain, and Ishrat Zahan
- Subjects
Materials science ,Power-law fluid ,Electrical resistivity and conductivity ,Shear stress ,General Earth and Planetary Sciences ,Blood flow ,Mechanics ,Power law ,Non-Newtonian fluid ,Finite element method ,General Environmental Science ,Magnetic field - Published
- 2020
47. GPU Accelerated Lattice Boltzmann Simulation of Non-Newtonian Power-Law Fluid in a Porous Enclosure
- Author
-
Md. Mamun Molla, Preetom Nag, and Mashnoon Islam
- Subjects
Physics ,J.2 ,I.6.0 ,Power-law fluid ,Darcy number ,Lattice Boltzmann methods ,Fluid Dynamics (physics.flu-dyn) ,FOS: Physical sciences ,Physics - Fluid Dynamics ,Mechanics ,Rayleigh number ,76-10, 76A05, 76D05, 35Q20, 35Q30, 74F10 ,Nusselt number ,Square (algebra) ,Non-Newtonian fluid ,Physics::Fluid Dynamics ,Heat transfer - Abstract
This paper demonstrates a numerical study of heat transfer in a square porous cavity filled with non-Newtonian power-law fluid. A Graphics Processing Unit (GPU) has been used to accelerate the numerical simulation, which uses the Multiple-Relaxation-Time (MRT) Lattice Boltzmann Method. A modified power-law model has been employed to characterize the flow of non-Newtonian fluids. The simulations have been conducted for the power-law index $n$ ranging from $(0.6 \leq n \leq 1.0)$, the Darcy number $Da$ ranging from $(10^{-3} \leq Da \leq 10^{-1})$ and the Rayleigh number $Ra$ ranging from $(10^3 \leq Ra \leq 10^5)$. Results show that the average Nusselt number ($\overline{Nu}$) decreases with an increase in the value of $n$ while $\overline{Nu}$ increases with an increase in the value of $Da$. Moreover, an increment in the value of $Ra$ leads to an increase in the average Nusselt number., Comment: Accepted Version, International Conference on Mechanical Engineering 2019 (ICME2019) 18-20 December, Dhaka, Bangladesh
- Published
- 2020
- Full Text
- View/download PDF
48. Simulation of the effects of non-Newtonian fluid on the behavior of a step hydraulic rod seal based on a power law fluid model
- Author
-
Xiangkai Meng, Wang Bingqing, and Xu-dong Peng
- Subjects
Materials science ,Power-law fluid ,Physics::Instrumentation and Detectors ,Physics::Medical Physics ,General Engineering ,02 engineering and technology ,Mechanics ,021001 nanoscience & nanotechnology ,Seal (mechanical) ,Non-Newtonian fluid ,Reynolds equation ,Physics::Fluid Dynamics ,Viscosity ,020303 mechanical engineering & transports ,0203 mechanical engineering ,Lubrication ,Newtonian fluid ,Hydraulic fluid ,0210 nano-technology - Abstract
The rheological characteristics of the oil film on the rod-seal interface in the sealing zone have a major influence on the behavior of reciprocating seals. Because of the addition of polymers, the viscosity and temperature properties of hydraulic oil have improved and the fluid presents non-Newtonian characteristics. To investigate the influence of these characteristics on seal behavior, a soft elastohydrodynamic lubrication (EHL) numerical model is introduced to simulate a step seal under a mixed lubrication condition. A modified Reynolds equation is derived for calculating the fluid film pressure distribution more accurately. The equation is based on the power law fluid model and Jakobsson-Floberg-Olsson (JFO) cavitation theory. Results are presented to gain insight into the effect of non-Newtonian fluid characteristics on seal behavior, and the simulated results are compared to those of a Newtonian fluid to reveal the seal mechanism. The influence of operating parameters and the seal surface root mean square (RMS) roughness on sealing performance under different power law indexes is also investigated and discussed.
- Published
- 2018
49. Peristaltic transport of a power-law fluid in an elastic tube
- Author
-
C.K. Selvi, S. Sreenadh, and A. N. S. Srinivas
- Subjects
Physics ,volume flow rate ,Peristaltic flow ,Power-law fluid ,Physics::Medical Physics ,power-law index ,02 engineering and technology ,Mechanics ,non-Newtonian fluid ,01 natural sciences ,Non-Newtonian fluid ,010305 fluids & plasmas ,Volumetric flow rate ,Physics::Fluid Dynamics ,020303 mechanical engineering & transports ,peristaltic flow ,0203 mechanical engineering ,Generalized Newtonian fluid ,0103 physical sciences ,Tube (fluid conveyance) ,Elastic tube ,Elasticity (economics) ,lcsh:Science (General) ,Peristalsis ,lcsh:Q1-390 - Abstract
A mathematical model is proposed to study the influence of elasticity on the peristaltic flow of a generalized Newtonian fluid in a tube. A power-law model is considered in the present study to understand the effect of elasticity on the peristaltic flow of blood through arteries. Application of blood flow through arteries is studied by expressing a relationship between pressure gradient and volume flow rate in an elastic tube. The results show the significant effect of elasticity on flow quantities. It is observed that the flux increases as the fluid behaviour index increases and that the flux is more for a Newtonian fluid when compared to non-Newtonian cases. The trapping phenomenon is presented graphically for various physical parameters. The results obtained in the present study are compared with an earlier investigation of Vajravelu et al. (Peristaltic transport of a Herschel–Bulkley fluid in an elastic tube. Heat Transf-Asian Res. 2014;44:585–598).
- Published
- 2018
50. An Investigation of the Forced Convection and Heat Transfer with a Cylindrical Agitator Subjected to Non-Newtonian Nanofluids
- Author
-
Wei Zhang, Liangliang Zhu, Liancun Zheng, Tao Liu, and Botong Li
- Subjects
Materials science ,Power-law fluid ,020209 energy ,General Physics and Astronomy ,02 engineering and technology ,Mechanics ,021001 nanoscience & nanotechnology ,Non-Newtonian fluid ,Agitator ,Forced convection ,Physics::Fluid Dynamics ,Nanofluid ,Heat transfer ,0202 electrical engineering, electronic engineering, information engineering ,Physical and Theoretical Chemistry ,0210 nano-technology ,Mathematical Physics - Abstract
The present research performed a numerical simulation of laminar forced convection nanofluid-based non-Newtonian flow in a channel connecting a tank with heating regions. To achieve a rapid diffusion of heat, a cylindrical agitator is inserted into the tank. Power-law modelling is employed to describe the effect of non-Newtonian behaviour. The velocity and temperature fields and heat transfer coefficient ratio are studied systematically, taking into account the impact of various parameters, such as the generalised Reynolds number Re, generalised Prandtl number Pr, angular velocity of a cylinder ω, nanoparticle volume fraction ϕ, mixer size and location. Our research reveals that, to improve the heat transfer in practice, several applicable strategies are available, including the addition of more nanoparticles into the base fluid, which proved to be the most efficient method to enhance the heat transfer of a nanofluid.
- Published
- 2018
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.