1. A novel and facile synthesis of tetra branched derivatives of nociceptin/orphanin FQ
- Author
-
Anna Rizzi, Severo Salvadori, Girolamo Calo, Maria Camilla Cerlesi, Stefano Molinari, Claudio Trapella, Davide Malfacini, Michela Pela, Remo Guerrini, and Erika Marzola
- Subjects
Male ,Stereochemistry ,Clinical Biochemistry ,NOP ,Molecular Conformation ,Pharmaceutical Science ,Peptide ,Ligands ,Biochemistry ,Nociceptin Receptor ,NO ,Eating ,Mice ,Structure-Activity Relationship ,In vivo ,Drug Discovery ,Animals ,Moiety ,Molecular Biology ,Injections, Intraventricular ,chemistry.chemical_classification ,Dose-Response Relationship, Drug ,biology ,Organic Chemistry ,Biological activity ,biology.organism_classification ,Combinatorial chemistry ,Electric Stimulation ,In vitro ,Nociceptin receptor ,Opioid Peptides ,chemistry ,Receptors, Opioid ,Molecular Medicine ,Tetra - Abstract
Branched peptides have been found to be useful in several research fields however their synthesis and purification is complicated. Here we present a novel and facile synthesis of tetra branched derivatives of nociceptin/orphanin FQ (N/OFQ). Three N/OFQ tetra branched derivatives were prepared using novel cores ( PWT1 , PWT2 and PWT3 ) containing a maleimido moiety. [Cys 18 ]N/OFQ-NH 2 was linked to the cores via thiol-Michael reaction characterized by high yield and purity of the desired final product. In the electrically stimulated mouse vas deferens PWT-N/OFQ derivatives mimicked the inhibitory action of the natural sequence showing similar maximal effects and 3 fold higher potencies. The NOP selective antagonist SB-612111 antagonized the effects of N/OFQ and PWT derivatives with similar p K B values (8.02–8.48). In vivo after supraspinal administration PWT2-N / OFQ stimulated food intake in mice mimicking the action of N/OFQ. Compared to the natural peptide PWT2-N / OFQ was 40 fold more potent and elicited larger effects. These findings suggest that the PWT chemical strategy can be successfully applied to biologically active peptides to generate, with unprecedented high purity and yield, tetra branched derivatives displaying an in vitro pharmacological profile similar to that of the natural sequence associated, in vivo, to increased potency and effectiveness.
- Published
- 2014
- Full Text
- View/download PDF