The proposed solution relates to fluidics and can be used, for example, in the extraction of oil and gas, the collection and preparation of oil, gas and water, the extraction of methane from methane beds, oil refining. The technical result is to increase the efficiency of a liquid-gas ejector by ensuring its work in the field of rational concentrations and salt composition, in which the intensification of energy exchange between the working fluid and the ejected gas is achieved. The essence of the proposed solution: the method of operation of a liquid-gas ejector involves injecting a working fluid with a power pump into the ejector nozzle, pumping gas with an ejector, creating, dispersing and increasing the pressure of a gas-liquid mixture with an ejector using aqueous solutions of salts as a working fluid. The values of the concentration and composition of salts in the working fluid are maintained within the range of rational concentrations and composition of salts, in which increased values of the efficiency of the ejector are achieved. Salts are added to the weakly mineralized aqueous solutions, and the highly mineralized aqueous solutions are diluted with fresh water. As the working fluid, the formation and/or incidentally produced waters of oil, gas, gas condensate and methane-coal deposits, which are aqueous solutions of salts, are used if the composition and concentration of salts in the produced and/or incidentally produced waters are within the range of rational concentrations and composition of salts in which provides an increase in the efficiency of the ejector. The boundaries of the field of rational concentrations and salt composition are preliminarily determined by laboratory bench studies.