1. A whole-system approach to x-ray spectroscopy in cargo inspection systems.
- Author
-
Langeveld, Willem G. J., Gozani, Tsahi, Ryge, Peter, Sinha, Shrabani, Shaw, Tim, and Strellis, Dan
- Subjects
- *
CARGO inspection , *X-ray spectroscopy , *BREMSSTRAHLUNG , *NUCLEAR counters , *ELECTRONICS , *LINEAR accelerators , *ZINC oxide - Abstract
The bremsstrahlung x-ray spectrum used in high-energy, high-intensity x-ray cargo inspection systems is attenuated and modified by the materials in the cargo in a Z-dependent way. Therefore, spectroscopy of the detected x rays yields information about the Z of the x-rayed cargo material. It has previously been shown that such ZSpectroscopy (Z-SPEC) is possible under certain circumstances. A statistical approach, Z-SCAN (Z-determination by Statistical Count-rate ANalysis), has also been shown to be effective, and it can be used either by itself or in conjunction with Z-SPEC when the x-ray count rate is too high for individual x-ray spectroscopy. Both techniques require fast x-ray detectors and fast digitization electronics. It is desirable (and possible) to combine all techniques, including x-ray imaging of the cargo, in a single detector array, to reduce costs, weight, and overall complexity. In this paper, we take a whole-system approach to x-ray spectroscopy in x-ray cargo inspection systems, and show how the various parts interact with one another. Faster detectors and read-out electronics are beneficial for both techniques. A higher duty-factor x-ray source allows lower instantaneous count rates at the same overall x-ray intensity, improving the range of applicability of Z-SPEC in particular. Using an intensity-modulated advanced x-ray source (IMAXS) allows reducing the x-ray count rate for cargoes with higher transmission, and a stacked-detector approach may help material discrimination for the lowest attenuations. Image processing and segmentation allow derivation of results for entire objects, and subtraction of backgrounds. We discuss R&D performed under a number of different programs, showing progress made in each of the interacting subsystems. We discuss results of studies into faster scintillation detectors, including ZnO, BaF2 and PbWO4, as well as suitable photo-detectors, read-out and digitization electronics. We discuss high-duty-factor linear-accelerator x-ray sources and their associated requirements, and how such sources improve spectroscopic techniques. We further discuss how image processing techniques help in correcting for backgrounds and overlapping materials. In sum, we present an integrated picture of how to optimize a cargo inspection system for x-ray spectroscopy. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF