1. Deeply virtual Compton scattering off the neutron
- Author
-
M. Benali, C. Desnault, M. Mazouz, Z. Ahmed, H. Albataineh, K. Allada, K. A. Aniol, V. Bellini, W. Boeglin, P. Bertin, M. Brossard, A. Camsonne, M. Canan, S. Chandavar, C. Chen, J.-P. Chen, M. Defurne, C. W. de Jager, R. de Leo, A. Deur, L. El Fassi, R. Ent, D. Flay, M. Friend, E. Fuchey, S. Frullani, F. Garibaldi, D. Gaskell, A. Giusa, O. Glamazdin, S. Golge, J. Gomez, O. Hansen, D. Higinbotham, T. Holmstrom, T. Horn, J. Huang, M. Huang, G. M. Huber, C. E. Hyde, S. Iqbal, F. Itard, Ho. Kang, Hy. Kang, A. Kelleher, C. Keppel, S. Koirala, I. Korover, J. J. LeRose, R. Lindgren, E. Long, M. Magne, J. Mammei, D. J. Margaziotis, P. Markowitz, A. Martí Jiménez-Argüello, F. Meddi, D. Meekins, R. Michaels, M. Mihovilovic, N. Muangma, C. Muñoz Camacho, P. Nadel-Turonski, N. Nuruzzaman, R. Paremuzyan, R. Pomatsalyuk, A. Puckett, V. Punjabi, Y. Qiang, A. Rakhman, M. N. H. Rashad, S. Riordan, J. Roche, G. Russo, F. Sabatié, K. Saenboonruang, A. Saha, B. Sawatzky, L. Selvy, A. Shahinyan, S. Sirca, P. Solvignon, M. L. Sperduto, R. Subedi, V. Sulkosky, C. Sutera, W. A. Tobias, G. M. Urciuoli, D. Wang, B. Wojtsekhowski, H. Yao, Z. Ye, L. Zana, X. Zhan, J. Zhang, B. Zhao, Z. Zhao, X. Zheng, P. Zhu, Laboratoire de Physique de Clermont (LPC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA), Institut de Physique Nucléaire d'Orsay (IPNO), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), and Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Clermont Auvergne (UCA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
quark: flavor ,Astrophysics::High Energy Astrophysical Phenomena ,High Energy Physics::Lattice ,High Energy Physics::Phenomenology ,Nuclear Theory ,n: structure function ,nucleon ,FOS: Physical sciences ,General Physics and Astronomy ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,01 natural sciences ,High Energy Physics - Experiment ,010305 fluids & plasmas ,High Energy Physics - Phenomenology ,High Energy Physics - Experiment (hep-ex) ,High Energy Physics - Phenomenology (hep-ph) ,deeply virtual Compton scattering ,0103 physical sciences ,photon: scattering ,High Energy Physics::Experiment ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Nuclear Experiment - Abstract
The three-dimensional structure of nucleons (protons and neutrons) is embedded in so-called generalized parton distributions, which are accessible from deeply virtual Compton scattering. In this process, a high energy electron is scattered off a nucleon by exchanging a virtual photon. Then, a highly-energetic real photon is emitted from one of the quarks inside the nucleon, which carries information on the quark's transverse position and longitudinal momentum. By measuring the cross-section of deeply virtual Compton scattering, Compton form factors related to the generalized parton distributions can be extracted. Here, we report the observation of unpolarized deeply virtual Compton scattering off a deuterium target. From the measured photon-electroproduction cross-sections, we have extracted the cross-section of a quasi-free neutron and a coherent deuteron. Due to the approximate isospin symmetry of quantum chromodynamics, we can determine the contributions from the different quark flavours to the helicity-conserved Compton form factors by combining our measurements with previous ones probing the proton's internal structure. These results advance our understanding of the description of the nucleon structure, which is important to solve the proton spin puzzle.
- Published
- 2020
- Full Text
- View/download PDF