14 results on '"Jaulent, Jean-François"'
Search Results
2. Sur la trivialit{é} de certains modules d'Iwasawa
- Author
-
Jaulent, Jean-François
- Subjects
Mathematics - Number Theory ,Mathematics::Number Theory ,FOS: Mathematics ,Number Theory (math.NT) - Abstract
We discuss the triviality of some classical Iwasawa modules in connection with the notion of $\ell$-rationality for totally $\ell$-adic number fields., Comment: in French language
- Published
- 2022
- Full Text
- View/download PDF
3. On S-ramified T-split Iwasawa modules
- Author
-
Jaulent, Jean-François and Université de Bordeaux (UB)
- Subjects
Mathematics - Number Theory ,Mathematics::K-Theory and Homology ,Mathematics::Number Theory ,FOS: Mathematics ,11R23 ,11R37 ,Number Theory (math.NT) ,tamely ramified modules ,Mirror involution ,[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT] ,Iwasawa theory - Abstract
We correct the faulty formulas given in a previous article and we compute the defect group for the Iwasawa $\lambda$ invariants attached to the S-ramified T-decomposed a belian pro-{\ell}-extensions on the Z{\ell}-cyclotomic extensionof a number field. As a consequence, we extend the results of Itoh, Mizusawa and Ozaki on tamely ramified Iwasawa modules for the cyclotomic Z{\ell}-extension of abelian fields., Comment: in French
- Published
- 2021
4. Genre des corps surcirculaires
- Author
-
Jaulent, Jean-François, Institut de Mathématiques de Bordeaux (IMB), and Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Iwasawa invariants ,Mathematics - Number Theory ,Kida formula ,genus theory ,Mathematics::Number Theory ,FOS: Mathematics ,surcircular fields ,Kuz'min formula ,Number Theory (math.NT) ,Wingberg formula ,[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT] - Abstract
We show that Riemann-Hurwitz-style translation formulas obtained by Kuz'min, Kida, Iwasawa, Wingberg et alii for the lambda invariant attached to certain Iwasawa moduli in cyclotomic Z{\ell}-extension of number fields are essentially equivalent. More precisely, we prove that all these formulas,including those stated in terms of representations, resul tidentically for purely algebraic reasons from the arithmetic computation of a suitable Herbrand quotient which it suffices to carry out in the cyclic case of prime degree {\ell}., Comment: in French. Le texte est la mise au format LATEX de l'article dactylographi{\'e} original paru aux Publications Math{\'e}matiques de Besan\c{c}on en 1986. Il n'en diff{\`e}re que par la correction de diverses coquilles,par l'harmonisation de quelques notations avec celles des articles ult{\'e}rieurs (notamment l'inversion de position de S et T) ainsi que par la num{\'e}rotation des th{\'e}or{\`e}mes
- Published
- 2021
- Full Text
- View/download PDF
5. Circular annihilators of logarithmic classes
- Author
-
Jaulent, Jean-François, Institut de Mathématiques de Bordeaux (IMB), and Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Mathematics - Number Theory ,Logarithmic units ,Solomon conjecture ,FOS: Mathematics ,Circular units ,11R18, 11R23, 11R37 ,Number Theory (math.NT) ,Logarithmic classes ,Universal norms ,[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT] - Abstract
Given a real abelian field F with group G and an odd prime number {\ell}, we define the circular subgroup of the pro-{\ell}-group of logarithmic units and we show that for any Galois morphism $\rho$ from the pro-{\ell}-group of logarithmic units to Z{\ell} [G ], the image of the circular subgroup annihilates the {\ell}-group of logarithmic classes. We deduce from this a proof of a logarithmic version of Solomon conjecture., Comment: in French
- Published
- 2020
6. Annulateurs de Stickelberger des groupes de classes logarithmiques
- Author
-
Jaulent, Jean-François, Institut de Mathématiques de Bordeaux (IMB), and Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Mathematics - Number Theory ,Bertrandias-Payan module ,FOS: Mathematics ,Number Theory (math.NT) ,Stickelberger annihilators ,wild étale kernels ,[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT] ,logarithmic classes ,11R23,11R37,11R70 - Abstract
For any odd prime number $\ell$ and any abelian number field F containing the $\ell$-th roots of unity, we show that the Stickelberger ideal annihilates the imaginary component of the $\ell$-group of logarithmic classes and that its reflection annihilates the real componen of the Bertrandias-Payan module. As a consequence we obtain a very simple proof of annihilation results for the so-called wild {\'e}tale $\ell$-kernels of F ., Comment: in French
- Published
- 2020
- Full Text
- View/download PDF
7. Normes universelles et conjecture de Greenberg
- Author
-
Jaulent, Jean-François, Institut de Mathématiques de Bordeaux (IMB), and Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Mathematics - Number Theory ,Mathematics::K-Theory and Homology ,Mathematics::Number Theory ,FOS: Mathematics ,Number Theory (math.NT) ,[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT] - Abstract
We investigate the group of universal norms attached to the cyclotomic Z {\ell}-tower of a totally real number field in connection with Grenberg's conjecture on Iwasawa invariants of such a field., Comment: in French. Acta Arithmetica, Instytut Matematyczny PAN, A para{\^i}tre
- Published
- 2019
- Full Text
- View/download PDF
8. Note on Greenberg conjecture
- Author
-
Jaulent, Jean-François, Institut de Mathématiques de Bordeaux (IMB), and Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Principalization ,11R23, 11R37, 11R18 ,Mathematics - Number Theory ,Mathematics::Number Theory ,FOS: Mathematics ,Greenberg conjecture ,Number Theory (math.NT) ,Logarithmic class groups ,[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT] ,Iwasawa theory - Abstract
We use logarithmic {\ell}-class groups to take a new view on Greenberg's conjecture about Iwasawa {\ell}-invariants of a totally real number field K. By the way we recall and complete some classical results. Under Leopoldt's conjecture, we prove that Greenberg's conjecture holds if and only if the logarithmic classes of K principalize in the cyclotomic Z{\ell}-extensions of K. As an illustration of our approach, in the special case where the prime {\ell} splits completely in K, we prove that the sufficient condition introduced by Gras just asserts the triviality of the logarithmic class group of K.Last, in the abelian case, we provide an explicit description of the circular class groups in connexion with the so-called weak conjecture., Comment: in French
- Published
- 2016
- Full Text
- View/download PDF
9. On cyclotomic norms and the conjectures of Leopoldt and Gross-Kuz'min
- Author
-
Jaulent, Jean-François
- Subjects
Mathematics - Number Theory ,Mathematics::Number Theory ,FOS: Mathematics ,Number Theory (math.NT) - Abstract
We use $\ell$-adic class field theory to take a new view on cyclotomic norms and Leopoldt or Gross generalized conjectures. By the way we recall and complete some classical results. We illustrate the logarithmic approach by various numerical examples and counter-examples obtained with PARI., Comment: in French
- Published
- 2015
- Full Text
- View/download PDF
10. Plongements l-adiques et l-nombres de Weil
- Author
-
Jaulent, Jean-François, Institut de Mathématiques de Bordeaux (IMB), and Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
11R23 ,Mathematics - Number Theory ,Mathematics::Number Theory ,FOS: Mathematics ,Number Theory (math.NT) ,Mathematics::Representation Theory ,[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT] - Abstract
International audience; We define l-adic analogs of classical Weil numbers in connexion both with complex or l-adic imbeddings of number fields and real or l-adic absolute values. As an application we give some consequences related to the Iwasawa theory of cyclotomic towers.
- Published
- 2008
11. Note sur les corps 2-rationnels
- Author
-
JAULENT, Jean-François, Institut de Mathématiques de Bordeaux (IMB), and Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
11R32 11R34 11R37 11R70 ,Mathematics - Number Theory ,virtually free pro-p-groups ,p-rational fields ,Mathematics::Number Theory ,FOS: Mathematics ,p-regular fields ,Number Theory (math.NT) ,2-rational fields ,free pro-p-products ,[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT] - Abstract
We compute the Galois group of the maximal 2-ramified pro-2-extension of a 2-rational number field
- Published
- 2008
12. A new Algorithm for the Computation of logarithmic l-Class Groups of Number Fields
- Author
-
Diaz Y Diaz, Francisco, Jaulent, Jean-François, Pauli, Sebastian, Pohst, Michael, Soriano-Gafiuk, Florence, Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Department of Mathematics and Statistics (DMS), University of North Carolina [Greensboro] (UNCG), University of North Carolina System (UNC)-University of North Carolina System (UNC), Institut für Mathematik [Berlin], Technische Universität Berlin (TU), Laboratoire de Mathématiques et Applications de Metz (LMAM), and Centre National de la Recherche Scientifique (CNRS)-Université Paul Verlaine - Metz (UPVM)
- Subjects
Mathematics - Number Theory ,FOS: Mathematics ,Number Theory (math.NT) ,11R70 11R29 11R23 ,11R70, 11R29, 11R23 ,[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT] - Abstract
We present an algorithm for the computation of logarithmic l-class groups of number fields. Our principal motivation is the effective determination of the l-rank of the wild kernel in the K-theory of number fields.
- Published
- 2008
- Full Text
- View/download PDF
13. L'état actuel du problème de la capitulation
- Author
-
Jaulent, Jean-François, Institut de Mathématiques de Bordeaux (IMB), and Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Mathematics - Number Theory ,11R37 ,FOS: Mathematics ,Number Theory (math.NT) ,Capitulation of ideal classes ,[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT] - Abstract
The text is a synthetic presentation of the state of the knowledge about the capitulation for the class-groups of numbers fields, shortly before the demonstration by Suzuki of the main conjecture on this question., Comment: in French, Journal de Th\'eorie des Nombres de Bordeaux, Soci\'et\'e Arithm\'etique de Bordeaux, 1987
- Published
- 1987
14. Note sur la conjecture de Leopoldt
- Author
-
Jaulent, Jean-François, Institut de Mathématiques de Bordeaux (IMB), and Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Mathematics - Number Theory ,Leopoldt conjecture ,Mathematics::Number Theory ,11R27 ,FOS: Mathematics ,Number Theory (math.NT) ,[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT] - Abstract
Peu après la mise en ligne de cette note, Georges Gras m'a fait observer que la preuve du Théorème principal est inexacte, l'extension construite n'étant pas décomposée en chacune des places au-dessus de l, mais seulement en l'une d'elles. Ce peut être un exercice intéressant que découvrir pourquoi !; We prove that number fields with arbitrary degree but weak ramification satisfy the Leopoldt conjecture on the l-adic rank of the group of units
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.