1. Acyl-CoA-Binding Protein Is a Lipogenic Factor that Triggers Food Intake and Obesity.
- Author
-
Bravo-San Pedro JM, Sica V, Martins I, Pol J, Loos F, Maiuri MC, Durand S, Bossut N, Aprahamian F, Anagnostopoulos G, Niso-Santano M, Aranda F, Ramírez-Pardo I, Lallement J, Denom J, Boedec E, Gorwood P, Ramoz N, Clément K, Pelloux V, Rohia A, Pattou F, Raverdy V, Caiazzo R, Denis RGP, Boya P, Galluzzi L, Madeo F, Migrenne-Li S, Cruciani-Guglielmacci C, Tavernarakis N, López-Otín C, Magnan C, and Kroemer G
- Subjects
- Animals, Anorexia Nervosa metabolism, Cell Line, Fatty Acids metabolism, Female, Humans, Male, Mice, Mice, Inbred C57BL, Mice, Obese, Weight Gain, Weight Loss, Diazepam Binding Inhibitor metabolism, Eating, Lipogenesis, Macroautophagy, Obesity metabolism
- Abstract
Autophagy facilitates the adaptation to nutritional stress. Here, we show that short-term starvation of cultured cells or mice caused the autophagy-dependent cellular release of acyl-CoA-binding protein (ACBP, also known as diazepam-binding inhibitor, DBI) and consequent ACBP-mediated feedback inhibition of autophagy. Importantly, ACBP levels were elevated in obese patients and reduced in anorexia nervosa. In mice, systemic injection of ACBP protein inhibited autophagy, induced lipogenesis, reduced glycemia, and stimulated appetite as well as weight gain. We designed three approaches to neutralize ACBP, namely, inducible whole-body knockout, systemic administration of neutralizing antibodies, and induction of antiACBP autoantibodies in mice. ACBP neutralization enhanced autophagy, stimulated fatty acid oxidation, inhibited appetite, reduced weight gain in the context of a high-fat diet or leptin deficiency, and accelerated weight loss in response to dietary changes. In conclusion, neutralization of ACBP might constitute a strategy for treating obesity and its co-morbidities., (Copyright © 2019 Elsevier Inc. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF