Laura F. Robinson, Paul Lerner, Allison W Jacobel, Sylvain Pichat, Kassandra M Costa, Adi Torfstein, George H. Rowland, Walter Geibert, Jörg Lippold, Alessandro Tagliabue, Samuel L Jaccard, Jean-Claude Dutay, Gideon M. Henderson, Stephanie S. Kienast, Alexandra R. Bausch, Claude Hillaire-Marcel, David McGee, Christoph Heinze, Gisela Winckler, Yuxin Zhou, Sharon S. Hoffmann, Robert F. Anderson, Figen Mekik, Christelle Not, Matthieu Roy-Barman, Frank J. Pavia, Lauren Kipp, Jerry F. McManus, Christopher T. Hayes, Franco Marcantonio, Lise Missiaen, Jennifer L. Middleton, Feifei Deng, David C Lund, Alfred Wegener Institute [Potsdam], Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), Lamont-Doherty Earth Observatory (LDEO), Columbia University [New York], Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Scottish Association for Marine Science (SAMS), German Aerospace Center (DLR), Department of Earth Sciences [Oxford], University of Oxford [Oxford], Université du Québec à Montréal = University of Québec in Montréal (UQAM), Oeschger Centre for Climate Change Research (OCCR), University of Bern, Dalhousie University [Halifax], Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon), Max Planck Institute for Chemistry (MPIC), Max-Planck-Gesellschaft, Géochimie Des Impacts (GEDI), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Department of Oceanography [Cape Town], University of Cape Town, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), University of Oxford, Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), and Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
International audience; 230 Th normalization is a valuable paleoceanographic tool for reconstructing high-resolution sediment fluxes during the late Pleistocene (last~500,000 years). As its application has expanded to ever more diverse marine environments, the nuances of 230 Th systematics, with regard to particle type, particle size, lateral advective/diffusive redistribution, and other processes, have emerged. We synthesized over 1000 sedimentary records of 230 Th from across the global ocean at two time slices, the late Holocene (0-5,000 years ago, or 0-5 ka) and the Last Glacial Maximum (18.5-23.5 ka), and investigated the spatial structure of 230 Th-normalized mass fluxes. On a global scale, sedimentary mass fluxes were significantly higher during the Last Glacial Maximum (1.79-2.17 g/cm 2 kyr, 95% confidence) relative to the Holocene (1.48-1.68 g/cm 2 kyr, 95% confidence). We then examined the potential confounding influences of boundary scavenging, nepheloid layers, hydrothermal scavenging, size-dependent sediment fractionation, and carbonate dissolution on the efficacy of 230 Th as a constant flux proxy. Anomalous 230 Th behavior is sometimes observed proximal to hydrothermal ridges and in continental margins where high particle fluxes and steep continental slopes can lead to the combined effects of boundary scavenging and nepheloid interference. Notwithstanding these limitations, we found that 230Th normalization is a robust tool for determining sediment mass accumulation rates in the majority of pelagic marine settings (>1,000 m water depth).