1. Infinite-dimensional moment-SOS hierarchy for nonlinear partial differential equations
- Author
-
Henrion, Didier, Infusino, Maria, Kuhlmann, Salma, Vinnikov, Victor, Department of Control Engineering, Faculty of Electrical Engineering [Prague], Czech Technical University in Prague (CTU), Equipe Polynomial OPtimization (LAAS-POP), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT), Università degli Studi di Cagliari = University of Cagliari (UniCa), Universität Konstanz, and Ben-Gurion University of the Negev (BGU)
- Subjects
Mathematics - Functional Analysis ,Primary 90C25, Secondary 90C22, 13J30, 44A60, 46N10, 47A57 ,Mathematics - Analysis of PDEs ,Optimization and Control (math.OC) ,FOS: Mathematics ,[INFO]Computer Science [cs] ,[MATH]Mathematics [math] ,Mathematics - Optimization and Control ,Analysis of PDEs (math.AP) ,Functional Analysis (math.FA) - Abstract
We formulate a class of nonlinear {evolution} partial differential equations (PDEs) as linear optimization problems on moments of positive measures supported on infinite-dimensional vector spaces. Using sums of squares (SOS) representations of polynomials in these spaces, we can prove convergence of a hierarchy of finite-dimensional semidefinite relaxations solving approximately these infinite-dimensional optimization problems. As an illustration, we report on numerical experiments for solving the heat equation subject to a nonlinear perturbation., Comment: 24 pages, 1 table, 3 figures
- Published
- 2023