1. Cognate sensor kinase-independent activation of Mycobacterium tuberculosis response regulator DevR (DosR) by acetyl phosphate: implications in anti-mycobacterial drug design.
- Author
-
Sharma S, Kumari P, Vashist A, Kumar C, Nandi M, and Tyagi JS
- Subjects
- Acetates metabolism, Aerobiosis, Bacterial Proteins metabolism, DNA-Binding Proteins, Phosphate Acetyltransferase genetics, Phosphate Acetyltransferase metabolism, Phosphoric Monoester Hydrolases metabolism, Phosphorylation, Protein Kinases metabolism, Bacterial Proteins genetics, Gene Expression Regulation, Bacterial, Mycobacterium tuberculosis enzymology, Mycobacterium tuberculosis genetics, Organophosphates metabolism, Protein Kinases genetics, Regulon
- Abstract
The DevRS/DosT two-component system is essential for mycobacterial survival under hypoxia, a prevailing stress within granulomas. DevR (also known as DosR) is activated by an inducing stimulus, such as hypoxia, through conventional phosphorylation by its cognate sensor kinases, DevS (also known as DosS) and DosT. Here, we show that the DevR regulon is activated by acetyl phosphate under 'non-inducing' aerobic conditions when Mycobacterium tuberculosis devS and dosT double deletion strain is cultured on acetate. Overexpression of phosphotransacetylase caused a perturbation of the acetate kinase-phosphotransacetylase pathway, a decrease in the concentration of acetyl phosphate and dampened the aerobic induction response in acetate-grown bacteria. The operation of two pathways of DevR activation, one through sensor kinases and the other by acetyl phosphate, was established by an analysis of wild-type DevS and phosphorylation-defective DevSH395Q mutant strains under conditions partially mimicking a granulomatous-like environment of acetate and hypoxia. Our findings reveal that DevR can be phosphorylated in vivo by acetyl phosphate. Importantly, we demonstrate that acetyl phosphate-dependent phosphorylation can occur in the absence of DevR's cognate kinases. Based on our findings, we conclude that anti-mycobacterial therapy should be targeted to DevR itself and not to DevS/DosT kinases., (© 2018 John Wiley & Sons Ltd.)
- Published
- 2019
- Full Text
- View/download PDF