1. Boosting the therapeutic potential of cell secretome against osteoarthritis: Comparison of cytokine-based priming strategies.
- Author
-
Giannasi C, Della Morte E, Cadelano F, Valenza A, Casati S, Dei Cas M, Niada S, and Brini AT
- Subjects
- Humans, Cytokines metabolism, Secretome, Tumor Necrosis Factor-alpha metabolism, Osteoarthritis therapy, Osteoarthritis metabolism, Mesenchymal Stem Cells metabolism
- Abstract
The secretome, or conditioned medium (CM), from Mesenchymal Stem/stromal Cells (MSCs) has recently emerged as a promising cell-free therapeutic against osteoarthritis (OA), capable of promoting cartilage regeneration and immunoregulation. Priming MSCs with 10 ng/ml tumor necrosis factor α (TNFα) and/or 10 ng/ml interleukin 1β (IL-1β) aims at mimicking the pathological milieu of OA joints in order to target their secretion towards a pathology-tailored phenotype. Here we compare the composition of the CM obtained after 24 or 72 h from untreated and cytokine-treated adipose-derived MSCs (ASCs). The 72-hour double-primed CM presents a higher total protein yield, a larger number of extracellular vesicles, and a greater concentration of bioactive lipids, in particular sphingolipids, fatty acids, and eicosanoids. Moreover, the levels of several factors involved in immunomodulation and regeneration, such as TGF-β1, PGE2, and CCL-2, are strongly upregulated. Additionally, the differential profiling of 80 bioactive molecules indicates that primed CM is enriched in immune cell chemotaxis and migration factors. Our results indicate that pre-conditioning ASCs with inflammatory cytokines can modulate the composition of their CM, promoting the release of factors with recognized anti-inflammatory, chondroprotective, and immunoregulatory properties., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 The Authors. Published by Elsevier Masson SAS.. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF