1. Therapeutic options for mucinous ovarian carcinoma.
- Author
-
Gorringe KL, Cheasley D, Wakefield MJ, Ryland GL, Allan PE, Alsop K, Amarasinghe KC, Ananda S, Bowtell DDL, Christie M, Chiew YE, Churchman M, DeFazio A, Fereday S, Gilks CB, Gourley C, Hadley AM, Hendley J, Hunter SM, Kaufmann SH, Kennedy CJ, Köbel M, Le Page C, Li J, Lupat R, McNally OM, McAlpine JN, Pyman J, Rowley SM, Salazar C, Saunders H, Semple T, Stephens AN, Thio N, Torres MC, Traficante N, Zethoven M, Antill YC, Campbell IG, and Scott CL more...
- Subjects
- Adenocarcinoma, Mucinous metabolism, Adenocarcinoma, Mucinous pathology, Aged, Cohort Studies, DNA Mismatch Repair, Female, Homologous Recombination, Humans, Immunohistochemistry, Mutation, Neoplasm Staging, Ovarian Neoplasms metabolism, Ovarian Neoplasms pathology, Receptor, ErbB-2 genetics, Receptor, ErbB-3 genetics, Adenocarcinoma, Mucinous genetics, Adenocarcinoma, Mucinous therapy, Ovarian Neoplasms genetics, Ovarian Neoplasms therapy
- Abstract
Objective: Mucinous ovarian carcinoma (MOC) is an uncommon ovarian cancer histotype that responds poorly to conventional chemotherapy regimens. Although long overall survival outcomes can occur with early detection and optimal surgical resection, recurrent and advanced disease are associated with extremely poor survival. There are no current guidelines specifically for the systemic management of recurrent MOC. We analyzed data from a large cohort of women with MOC to evaluate the potential for clinical utility from a range of systemic agents., Methods: We analyzed gene copy number (n = 191) and DNA sequencing data (n = 184) from primary MOC to evaluate signatures of mismatch repair deficiency and homologous recombination deficiency, and other genetic events. Immunohistochemistry data were collated for ER, CK7, CK20, CDX2, HER2, PAX8 and p16 (n = 117-166)., Results: Molecular aberrations noted in MOC that suggest a match with current targeted therapies include amplification of ERBB2 (26.7%) and BRAF mutation (9%). Observed genetic events that suggest potential efficacy for agents currently in clinical trials include: KRAS/NRAS mutations (66%), TP53 missense mutation (49%), RNF43 mutation (11%), ARID1A mutation (10%), and PIK3CA/PTEN mutation (9%). Therapies exploiting homologous recombination deficiency (HRD) may not be effective in MOC, as only 1/191 had a high HRD score. Mismatch repair deficiency was similarly rare (1/184)., Conclusions: Although genetically diverse, MOC has several potential therapeutic targets. Importantly, the lack of response to platinum-based therapy observed clinically corresponds to the lack of a genomic signature associated with HRD, and MOC are thus also unlikely to respond to PARP inhibition., Competing Interests: Declaration of competing interest The authors declare no conflicts of interest. ADF, NT and DDLB have received research grant funding from AstraZeneca, unrelated to the contents on this manuscript. DDLB also reports funding from Roche-Genentech and BeiGene, also unrelated. CG reports funding from AstraZeneca, Roche, Clovis, Tesaro, Foundation One, Nucana, Aprea, Novartis, Chugai, and MSD, all outside the submitted work. CLS reports non-financial support and/or other support from Clovis Oncology, Roche, Eisai Australia, Beigene, Sierra Oncology, and AstraZeneca, all outside the submitted work., (Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.) more...
- Published
- 2020
- Full Text
- View/download PDF