1. Recovery of brain cholinesterases and effect on parameters of oxidative stres and apoptosis in quails (Coturnix japonica) after chlorpyrifos and vitamin B1 administration.
- Author
-
Ćupić Miladinović D, Prevendar Crnić A, Peković S, Dacić S, Ivanović S, Santibanez JF, Ćupić V, Borozan N, Antonijević Miljaković E, and Borozan S
- Subjects
- Animals, Brain drug effects, Coturnix, Interleukin-1 metabolism, Interleukin-6 metabolism, Male, Malondialdehyde metabolism, Thiamine administration & dosage, Apoptosis drug effects, Brain enzymology, Chlorpyrifos toxicity, Cholinesterases metabolism, Neurotoxins toxicity, Oxidative Stress drug effects, Thiamine pharmacology
- Abstract
Chlorpyrifos is a extensively used organophosphate pesticide (OP). In this study, we closely looked into neurotoxicity of CPF and effect of vitamin B1, by checking the levels of cholinesterases, determining the activity of parameters of oxidative stress, inflammation and also level of apoptotic regulator. The study was performed on a total of 80 male Japanese quails (Coturnix japonica), (two control and 6 experimental groups, n = 10). Three group of quails were given by gavage chlorpyrifos (CPF) for 7 consecutive days at doses of 1.50 mg/kg b.w., 3.00 mg/kg b.w., and 6.00 mg/kg b.w. Another three groups were treated with 10 mg/kg b.w. of vitamin B1 i.m. 30 min after CPF application (in above mentioned doses). Our study have proved that all doses of CPF significantly inhibited cholinesterases in brain, while vitamin B1 reactivated them. CPF has led to an increase in the concentration of malondialdehyde (MDA), and activity of catalase (CAT), superoxide dismutase (SOD), glutathione-S-transferase (GST), while tiamin changed the activity of antioxidant enzymes: CAT, SOD, GST. CPF stimulated apoptosis by decreasing B-cell lymphoma (Bcl-2) in brain, while application of vitamin B1 caused an increase of this parameter. CPF amplified inflammatory effect by elevating levels of inducible nitric oxide synthase (iNOS), and cyclooxygenase (COX-2). Thiamine proved its anti-inflammatory property by decreasing the expression of iNOS and interleukin-1(IL-1) and interleukin-6(IL-6). This study is highly pertinent because there is little defense currently available to humans and animals to prevent toxic effects of pesticides., (Copyright © 2020 Elsevier B.V. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF