1. Fast and pervasive diagenetic isotope exchange in foraminifera tests is species-dependent.
- Author
-
Cisneros-Lazaro D, Adams A, Guo J, Bernard S, Baumgartner LP, Daval D, Baronnet A, Grauby O, Vennemann T, Stolarski J, Escrig S, and Meibom A
- Subjects
- Foraminifera ultrastructure, Geologic Sediments chemistry, Hot Temperature, Humans, Seawater chemistry, Species Specificity, Calcium Carbonate chemistry, Chemistry Techniques, Analytical, Foraminifera chemistry, Oxygen Isotopes chemistry
- Abstract
Oxygen isotope compositions of fossil foraminifera tests are commonly used proxies for ocean paleotemperatures, with reconstructions spanning the last 112 million years. However, the isotopic composition of these calcitic tests can be substantially altered during diagenesis without discernible textural changes. Here, we investigate fluid-mediated isotopic exchange in pristine tests of three modern benthic foraminifera species (Ammonia sp., Haynesina germanica, and Amphistegina lessonii) following immersion into an
18 O-enriched artificial seawater at 90 °C for hours to days. Reacted tests remain texturally pristine but their bulk oxygen isotope compositions reveal rapid and species-dependent isotopic exchange with the water. NanoSIMS imaging reveals the 3-dimensional intra-test distributions of18 O-enrichment that correlates with test ultra-structure and associated organic matter. Image analysis is used to quantify species level differences in test ultrastructure, which explains the observed species-dependent rates of isotopic exchange. Consequently, even tests considered texturally pristine for paleo-climatic reconstruction purposes may have experienced substantial isotopic exchange; critical paleo-temperature record re-examination is warranted., (© 2022. The Author(s).)- Published
- 2022
- Full Text
- View/download PDF