1. Cancer/Testis Antigen PASD1 Silences the Circadian Clock
- Author
-
Amanda Anderson, Alicia K. Michael, Hema M. Kopalle, Patrick J. Sammons, Alison H. Banham, Carrie L. Partch, and Stacy L. Harvey
- Subjects
Male ,Models, Molecular ,Protein Structure ,endocrine system ,Period (gene) ,Circadian clock ,Molecular Sequence Data ,CLOCK Proteins ,E-box ,Biology ,Medical and Health Sciences ,RAR-related orphan receptor alpha ,Article ,Cell Line ,Models ,Antigens, Neoplasm ,Cell Line, Tumor ,Testis ,Humans ,Nuclear ,Circadian rhythm ,Amino Acid Sequence ,Gene Silencing ,Antigens ,Molecular Biology ,Conserved Sequence ,Genetics ,Neoplastic ,Tumor ,Molecular ,ARNTL Transcription Factors ,Antigens, Nuclear ,Cell Biology ,Exons ,Biological Sciences ,Bacterial circadian rhythms ,3. Good health ,Cell biology ,Circadian Rhythm ,Protein Structure, Tertiary ,CLOCK ,Gene Expression Regulation, Neoplastic ,Gene Expression Regulation ,Neoplasm ,Tertiary ,Developmental Biology - Abstract
© 2015 Elsevier Inc. The circadian clock orchestrates global changes in transcriptional regulation on a daily basis via the bHLH-PAS transcription factor CLOCK:BMAL1. Pathways driven by other bHLH-PAS transcription factors have a homologous repressor that modulates activity on a tissue-specific basis, but none have been identified for CLOCK:BMAL1. We show here that the cancer/testis antigen PASD1 fulfills this role to suppress circadian rhythms. PASD1 is evolutionarily related to CLOCK and interacts with the CLOCK:BMAL1 complex to repress transcriptional activation. Expression of PASD1 is restricted to germline tissues in healthy individuals but can be induced in cells of somatic origin upon oncogenic transformation. Reducing PASD1 in human cancer cells significantly increases the amplitude of transcriptional oscillations to generate more robust circadian rhythms. Our results describe a function for a germline-specific protein in regulation of the circadian clock and provide a molecular link from oncogenic transformation to suppression of circadian rhythms. The circadian clock orchestrates global changes in transcriptional regulation on a daily basis via the bHLH-PAS transcription factor CLOCK:BMAL1. Michael etal. report that the cancer/testis antigen PASD1 is evolutionarily related to CLOCK and inhibits CLOCK:BMAL1 activity in human cancer.
- Published
- 2014
- Full Text
- View/download PDF