1. All‐Slot‐Die‐Coated Inverted Perovskite Solar Cells in Ambient Conditions with Chlorine Additives.
- Author
-
Le, Thai Son, Saranin, Danila, Gostishchev, Pavel, Ermanova, Inga, Komaricheva, Tatiana, Luchnikov, Lev, Muratov, Dmitry, Uvarov, Alexander, Vyacheslavova, Ekaterina, Mukhin, Ivan, Didenko, Sergey, Kuznetsov, Denis, and Di Carlo, Aldo
- Subjects
SOLAR cells ,SOLAR cell manufacturing ,PEROVSKITE ,CHLORINE ,ELECTRON transport - Abstract
Large‐scale solution printing perovskite photovoltaics is one of the key technological advantages in comparison to the manufacturing of wafer‐based solar cells (Si, GaAs, etc.). Herein, all‐slot‐die‐coated perovskite solar cells (PSCs) in p–i–n (inverse) configuration with a process fully performed out of the glove box in ambient conditions are demonstrated. The successful implementation of the approach is demonstrated for devices based on the MAPbI3 and CsFAPbI3 perovskite absorbers with four slot‐die‐coated layers—NiOx/perovskite/PCBM/BCP. Noticeably, the use of Cl‐containing additives MACl and FACl in combination with vacuum quenching is found to be essential for the reproducible and controllable crystallization of the perovskite films. Moreover, vacuum quenching shows beneficial results also for the morphology of thin electron transporting layers—PCBM (40 nm) and BCP (11 nm). Finally, the power conversion efficiency (PCE) of the all‐slot‐die‐coated PSCs reaches the level of >16% for MAPbI3 and >17% for CsFAPbI3‐based devices. Slot‐die coating fabrication is successfully upscaled for minimodules (total active area 2.1 cm2), which demonstrates up to 14.9% of PCE. This result demonstrates the high potential of the slot‐die printing for sheet‐to‐sheet fabrication of PSCs and unravels the specifics for each functional layer in the p–i–n device. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF