1. Triplet-Triplet Annihilation Upconversion in Broadly Absorbing Layered Film Systems for Sub-Bandgap Photocatalysis
- Author
-
Seunghyun Weon, Jae-Hong Kim, Anna L. Hagstrom, and Wonyong Choi
- Subjects
Range (particle radiation) ,Photon ,Materials science ,business.industry ,Band gap ,Photovoltaic system ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Triplet triplet annihilation ,01 natural sciences ,Photon upconversion ,0104 chemical sciences ,Photocatalysis ,Optoelectronics ,General Materials Science ,0210 nano-technology ,Broadband absorption ,business - Abstract
Upconversion (UC) of sub-bandgap photons extends the effective light absorption range of photovoltaic and photocatalytic devices, allowing them to reach higher conversion efficiencies. Recent advances in polymer host materials make it possible to translate triplet-triplet annihilation (TTA)-UC, the UC mechanism most suitable for this purpose, to solid films that can be integrated into devices. The promise of these films is currently limited by the narrow light absorption of TTA-UC sensitizer chromophores, but incorporating multiple sensitizers into layered film systems presents a promising strategy for producing UC materials with broadened light absorption. This strategy is herein applied for photocatalytic air purification, demonstrating its use in a real-world application for the first time. We superimpose optimized red-to-blue and green-to-blue UC films within dual-layer systems and develop a new photocatalyst compatible with their fluorescence emission. By integrating the dual-layer UC film systems with films of this photocatalyst, we produce the first devices that use TTA-UC to harness both red and green sub-bandgap photons for hydroxyl radical generation and photocatalytic degradation of gaseous acetaldehyde, a model volatile organic compound (VOC). Under white light-emitting diode excitation, the dual-layer film systems' broadened light absorption enhances their devices' photocatalytic degradation efficiency, enabling them to degrade twice as much acetaldehyde as their single-sensitizer counterparts. We show that as a result of the different absorption profiles of the two sensitizers, the film order significantly impacts UC fluorescence and VOC degradation. By probing the influence of the excitation light source, excitation geometry, and chromophore spectral overlap on the film systems' UC performance, we propose a framework for the design of multilayer TTA-UC film systems suitable for integration with a variety of photovoltaic and photocatalytic devices.
- Published
- 2019