1. Topological determinants of self- sustained activity in a simple model of excitable dynamics on graphs
- Author
-
Annick Lesne, Marc-Thorsten Hütt, Claus C. Hilgetag, Christoph Fretter, Jacobs University [Bremen], Universitaetsklinikum Hamburg-Eppendorf = University Medical Center Hamburg-Eppendorf [Hamburg] ( UKE ), Laboratoire de Physique Théorique de la Matière Condensée ( LPTMC ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Centre National de la Recherche Scientifique ( CNRS ), Institut de Génétique Moléculaire de Montpellier ( IGMM ), Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ), Boston University [Boston] ( BU ), Universitaetsklinikum Hamburg-Eppendorf = University Medical Center Hamburg-Eppendorf [Hamburg] (UKE), Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Institut de Génétique Moléculaire de Montpellier (IGMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Boston University [Boston] (BU), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), and HAL UPMC, Gestionnaire
- Subjects
[ INFO ] Computer Science [cs] ,Context (language use) ,[SDV.GEN] Life Sciences [q-bio]/Genetics ,[INFO] Computer Science [cs] ,Network topology ,Topology ,01 natural sciences ,[ CHIM ] Chemical Sciences ,Article ,[ SDV.EE.SANT ] Life Sciences [q-bio]/Ecology, environment/Health ,03 medical and health sciences ,0302 clinical medicine ,[CHIM] Chemical Sciences ,0103 physical sciences ,[SDV.EE.SANT] Life Sciences [q-bio]/Ecology, environment/Health ,[CHIM]Chemical Sciences ,[INFO]Computer Science [cs] ,[SDV.NEU] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC] ,010306 general physics ,Physics ,Random graph ,[SDV.EE.SANT]Life Sciences [q-bio]/Ecology, environment/Health ,[SDV.GEN]Life Sciences [q-bio]/Genetics ,Multidisciplinary ,Computational neuroscience ,Computer simulation ,Node (networking) ,Function (mathematics) ,[ SDV.NEU ] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC] ,[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC] ,[ SDV.GEN ] Life Sciences [q-bio]/Genetics ,030217 neurology & neurosurgery ,Excitation - Abstract
Simple models of excitable dynamics on graphs are an efficient framework for studying the interplay between network topology and dynamics. This topic is of practical relevance to diverse fields, ranging from neuroscience to engineering. Here we analyze how a single excitation propagates through a random network as a function of the excitation threshold, that is, the relative amount of activity in the neighborhood required for the excitation of a node. We observe that two sharp transitions delineate a region of sustained activity. Using analytical considerations and numerical simulation, we show that these transitions originate from the presence of barriers to propagation and the excitation of topological cycles, respectively, and can be predicted from the network topology. Our findings are interpreted in the context of network reverberations and self-sustained activity in neural systems, which is a question of long-standing interest in computational neuroscience.
- Published
- 2017
- Full Text
- View/download PDF