1. Optimization of Electron Beams Based on Plasma-Density Modulation in a Laser-Driven Wakefield Accelerator
- Author
-
Lintong Ke, Changhai Yu, Ke Feng, Zhiyong Qin, Kangnan Jiang, Hao Wang, Shixia Luan, Xiaojun Yang, Yi Xu, Yuxin Leng, Wentao Wang, Jiansheng Liu, and Ruxin Li
- Subjects
bright electron beams ,laser-plasma wakefield accelerator ,plasma shockwave ,Technology ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Biology (General) ,QH301-705.5 ,Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
We demonstrate a simple but efficient way to optimize and improve the properties of laser-wakefield-accelerated electron beams (e beams) based on a controllable shock-induced density down-ramp injection that is achieved with an inserted tunable shock wave. The e beams are tunable from 400 to 800 MeV with charge ranges from 5 to 180 pC. e beams with high reproducibility (of ~95% in consecutive 100 shots) were produced in elaborate experiments with an average root- mean-square energy spread of 0.9% and an average divergence of 0.3 mrad. Three-dimensional particle-in-cell (PIC) simulations were also performed to accordingly verify and uncover the process of the injection and the acceleration. These tunable e beams will facilitate practical applications for advanced accelerator beam sources.
- Published
- 2021
- Full Text
- View/download PDF