1. Cold source of atomic hydrogen for loading large magnetic traps
- Author
-
Semakin, A., Ahokas, J., Hanski, O., Dvornichenko, V., Kiilerich, T., Nez, F., Yzombard, P., Nesvizhevsky, V., Widmann, E., Crivelli, P., and Vasiliev, S.
- Subjects
Physics - Atomic Physics - Abstract
We present a design and performance tests of an intense source of cold hydrogen atoms for loading large magnetic traps. Our source is based on a cryogenic dissociator of molecular hydrogen at 0.6 K followed by a series of thermal accommodators at 0.5, 0.2 and 0.13 K with inner surfaces covered by a superfluid helium film. All components are thermally anchored to corresponding stages of a dilution refrigerator. The source provides a continuous flux of 7$\cdot$$10^{13}$ H atoms/s in a temperature range of 130-200 mK. We have successfully used the source for loading a large Ioffe-Pritchard magnetic trap recently built in our laboratory [arXiv:2108.09123 or Rev. Sci. Instr. 93 (2), 023201 (2022)]. Calorimetric measurements of the atomic recombination heat allow reliable determination of the atomic flux and H gas density in the trap. We have tested the performance of the source and loading of H atoms into the trap at various configurations of the trapping field, reducing the magnetic barrier height to 75% and 50% of the nominal value of 0.8 T (0.54 K) as well as at the open configuration of the trap at its lower end, when the atoms are in contact with the trapping cell walls covered by a superfluid helium film. In the latter case, raising the trapping cell temperature to 200-250 mK, the low-field seeking atoms at densities exceeding 10$^{11}$ cm$^{-3}$ can be stored for the time over 1000 s, sufficiently long for experiments on precision spectroscopy of cold H gas.
- Published
- 2024