1. The fruit of Rosa odorata sweet var. gigantea (Coll. et Hemsl.) Rehd. et Wils attenuates chronic atrophic gastritis induced by MNNG and its potential mechanism.
- Author
-
Yuan Z, Wang Y, Wang X, Du X, Li G, Luo L, Yao B, Zhang J, Zhao F, and Liu D
- Subjects
- Animals, Male, Rats, Humans, Epithelial-Mesenchymal Transition drug effects, Signal Transduction drug effects, Cell Movement drug effects, Chronic Disease, Disease Models, Animal, Transforming Growth Factor beta metabolism, Network Pharmacology, Gastritis, Atrophic drug therapy, Plant Extracts pharmacology, Rosa chemistry, Fruit, Rats, Sprague-Dawley
- Abstract
Ethnopharmacological Relevance: Rosa odorata Sweet var. gigantea (Coll. et Hemsl.) Rehd. et Wils is a commonly utilized traditional medicine among the Yi nationality, also known as "Gugongguo", for the treatment of gastrointestinal disorders. Previous studies have indicated that the extract of Rosa odorata sweet var. gigantea (FOE) fruit has demonstrated a protective effect on the stomach; however, its impact on chronic atrophic gastritis (CAG) with severe disease remains unknown., Aim of the Study: This study aimed to investigate the impact of FOE on CAG and its underlying mechanisms both in vitro and in vivo., Materials and Methods: By employing Ultra Performance Liquid Chromatography/Quadrupole-Time of Flight Mass Spectrometry (UPLC-QTOF-MS/MS) and network pharmacology, the primary active compounds and action targets of FOE were identified. In vitro, the impact of FOE on CAG was investigated through scratch, migration, and invasion assays. Subsequently, guided by network pharmacology, EMT and TGF-β signaling pathway-related proteins were assessed using Western blot and immunofluorescence experiments. Additionally, an in vivo CAG rat model was established to validate the effects of FOE and confirm its mechanism of action through hematoxylin-eosin (H&E), immunohistochemistry, Western blot, as well as untargeted metabolomics analysis of rat serum. It was observed that FOE inhibited scratch healing abilities, migration, invasion capabilities, as well as the expression of EMT-related proteins (E-cadherin, N-cadherin, Snail, Vimentin) in CAG model cells (MC cells), providing initial evidence for its efficacy., Results: Through the analysis of UPLC-QTOF-MS/MS, a total of 51 major compounds were identified in the FOE. Subsequent network pharmacological analysis suggested that FOE may regulate Epithelial mesenchymal transition (EMT) through the transforming growth factor β (TGF-β) pathway. Furthermore, experimental verification demonstrated that FOE inhibited the protein expression of TGF-β1 and its downstream protein Smad2/3 in vitro. In vivo findings also indicated similar mechanisms in MC cells, suggesting a reversal of the CAG process and significant inhibition of EMT and TGF-β signaling pathways. Additionally, untargeted metabolomics of rat serum confirmed the therapeutic effect of FOE on CAG and predicted its potential involvement in the arachidonic acid metabolic pathway., Conclusion: This study initially demonstrated that FOE effectively reverses the process of EMT through the TGF-β1/Smad2/3 signaling pathway, thereby providing a therapeutic benefit for CAG., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2025
- Full Text
- View/download PDF