1. Resolved Gravity Waves in the Extratropical Stratosphere: Effect of Horizontal Resolution Increase from O (10) to O (1) km.
- Author
-
Polichtchouk, Inna, van Niekerk, Annelize, and Wedi, Nils
- Subjects
- *
GRAVITY waves , *STRATOSPHERE , *POLAR vortex , *WAVE forces , *STRATOSPHERIC circulation , *NUMERICAL weather forecasting - Abstract
Global ECMWF IFS simulations with horizontal grid spacings of 1, 4, and 9 km are used to assess gravity wave forcing (GWF) in the extratropical stratosphere. Results with important implications for GWF parameterizations at high and intermediate resolutions are presented. A doubling in the zonal-mean resolved GWF is observed when the horizontal resolution is increased from 9 to 1 km. Small-scale gravity waves with horizontal wavelengths < 100 km dominate this increase. Over most regions, excluding the polar night jet in the Antarctic spring, the total (resolved + parameterized) GWF at 9 km (4 km) is underestimated by up to 30% (15%). This implies that the parameterization of GWF is still required at 9 and 4 km horizontal resolutions. Despite the small land area in the Southern Hemisphere (SH), the resolved orographic and nonorographic GWF contribute equally to the total GWF in the SH at 1 km resolution. This is not reflected in the partitioning of the parameterized GWF, which has a significantly larger nonorographic contribution at 9 km. As a result, a zonal-mean momentum budget analysis reveals that the total GWF contributes one-third of SH springtime polar vortex deceleration at 1 km, whereas the contribution is as much as 50% at 9 km. This suggests that a rebalancing of the parameterized nonorographic and orographic GWF is required. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF