1. Improved Constraints on Primordial Gravitational Waves using Planck, WMAP, and BICEP/Keck Observations through the 2018 Observing Season
- Author
-
J. J. Bock, M. Amiri, B. Steinbach, Kent D. Irwin, S. Kefeli, B. Racine, E. Hand, J. E. Tolan, Abigail G. Vieregg, C. Tucker, J. Willmert, N. Goeckner-Wald, S. Richter, A. Turner, H. Hui, B. L. Schmitt, T. Namikawa, G. Halal, P. A. R. Ade, K. G. Megerian, L. Zeng, R. Schwarz, Victor Buza, L. Minutolo, T. St. Germaine, C. D. Sheehy, Jake Connors, R. Basu Thakur, S. Fliescher, C. Pryke, M. Crumrine, Bicep, Mark Halpern, C. Umilta, Sarah M. Harrison, H. Yang, Chao-Lin Kuo, Che-Hang Yu, K. Lau, Shengyu Zhang, C. Bischoff, C. Verges, S. R. Hildebrandt, S. Fatigoni, R. O'Brient, Denis Barkats, Chao Zhang, Jeffrey P. Filippini, A. Cukierman, H. Boenish, H. T. Nguyen, D. V. Wiebe, K. S. Karkare, Gene C. Hilton, E. Young, J. Grayson, M. Eiben, Y. Nakato, Z. Ahmed, D. C. Goldfinger, A. C. Weber, J. R. Cheshire, L. Duband, C. D. Reintsema, S. Henderson, T. Prouve, A. Wandui, P. Grimes, K. L. Thompson, G. P. Teply, J. Cornelison, S. Palladino, J. Kang, E. V. Denison, Marion Dierickx, A. Lennox, A. Soliman, R. W. Ogburn, R. V. Sudiwala, E. Bullock, D. Beck, C. L. Wong, A. Schillaci, E. Karpel, J. Hubmayr, G. Hall, W. L. K. Wu, L. Moncelsi, K. W. Yoon, E. M. Leitch, S. A. Kernasovskiy, J. M. Kovac, Département des Systèmes Basses Températures (DSBT ), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Laboratoire des Cryoréfrigérateurs et Cryogénie Spatiale (LCCS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), BICEP, and Keck
- Subjects
noise ,satellite: Planck ,statistical analysis: confidence limit ,media_common.quotation_subject ,Cosmic microwave background ,General Physics and Astronomy ,cosmic background radiation: polarization ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,power spectrum ,01 natural sciences ,symbols.namesake ,gravitation: lens ,cosmological model: parameter space ,0103 physical sciences ,synchrotron ,Planck ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,media_common ,Physics ,Spectral index ,010308 nuclear & particles physics ,Gravitational wave ,Astrophysics::Instrumentation and Methods for Astrophysics ,gravitational radiation: primordial ,cosmological model: dust ,Polarization (waves) ,BICEP ,CMB cold spot ,Sky ,WMAP ,symbols ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Noise (radio) - Abstract
International audience; We present results from an analysis of all data taken by the BICEP2, Keck Array, and BICEP3 CMB polarization experiments up to and including the 2018 observing season. We add additional Keck Array observations at 220 GHz and BICEP3 observations at 95 GHz to the previous 95/150/220 GHz dataset. The Q/U maps now reach depths of 2.8, 2.8, and 8.8 μKCMB arcmin at 95, 150, and 220 GHz, respectively, over an effective area of ≈600 square degrees at 95 GHz and ≈400 square degrees at 150 and 220 GHz. The 220 GHz maps now achieve a signal-to-noise ratio on polarized dust emission exceeding that of Planck at 353 GHz. We take auto- and cross-spectra between these maps and publicly available WMAP and Planck maps at frequencies from 23 to 353 GHz and evaluate the joint likelihood of the spectra versus a multicomponent model of lensed ΛCDM+r+dust+synchrotron+noise. The foreground model has seven parameters, and no longer requires a prior on the frequency spectral index of the dust emission taken from measurements on other regions of the sky. This model is an adequate description of the data at the current noise levels. The likelihood analysis yields the constraint r0.05<0.036 at 95% confidence. Running maximum likelihood search on simulations we obtain unbiased results and find that σ(r)=0.009. These are the strongest constraints to date on primordial gravitational waves.
- Published
- 2021
- Full Text
- View/download PDF