1. Prolactin enhances insulin-like growth factor I receptor phosphorylation by decreasing its association with the tyrosine phosphatase SHP-2 in MCF-7 breast cancer cells.
- Author
-
Carver KC, Piazza TM, and Schuler LA
- Subjects
- Breast Neoplasms pathology, Cell Line, Tumor, Female, Humans, Insulin-Like Growth Factor I metabolism, Insulin-Like Growth Factor I pharmacology, Membrane Proteins metabolism, Phosphorylation drug effects, Phosphorylation physiology, Prolactin pharmacology, RNA, Small Interfering, Receptor Cross-Talk physiology, Receptor, IGF Type 1 genetics, Breast Neoplasms metabolism, Prolactin metabolism, Protein Tyrosine Phosphatase, Non-Receptor Type 11 metabolism, Receptor, IGF Type 1 metabolism, Signal Transduction physiology
- Abstract
Normal mammary development requires coordinated interactions of numerous factors, including prolactin (PRL) and insulin-like growth factor I (IGF-I), both of which have also been implicated in breast cancer pathogenesis and progression. We previously reported that PRL and IGF-I synergize in breast cancer cells to activate ERK1/2 and AKT, leading to increased proliferation, survival, and invasion. Intriguingly, PRL co-treatment with IGF-I augments IGF-I receptor (IGF-IR) phosphorylation 2-fold higher than IGF-I alone. Here, we showed the importance of the tyrosine phosphatase SHP-2 in this cross-talk using pharmacological inhibition and small interfering RNA. SHP-2 recruitment to IGF-IR was significantly attenuated by PRL co-treatment. Src family kinase activity was required for IGF-IR association with SHP-2, ligand-induced IGF-IR internalization, and PRL-enhanced IGF-IR phosphorylation. Inhibition of internalization, via knockdown of the GTPase, dynamin-2, prevented not only IGF-IR dephosphorylation, but also PRL-enhanced IGF-IR phosphorylation. Consistently, PRL diminished IGF-I-induced IGF-IR internalization, which may result from reduced SHP-2 association with IGF-IR, because we demonstrated an essential role for SHP-2 in IGF-IR internalization. Together, these findings describe a novel mechanism of cross-talk between PRL and IGF-I in breast cancer cells, with implications for our understanding of tumor progression and potential therapeutic strategies.
- Published
- 2010
- Full Text
- View/download PDF